

NAPSUGARAS MAGSUGARAK

Takács Endre Clemson Egyetem, Dél-Karolina, USA

%TRIUMF

Hunter Staiger, Steven Blundell, Dipti, Gerald Gwinner, Roshani Silwal, Alain Lapierre, John Gillaspy, Galen O'Neil, Joseph Tan, Yuri Ralchenko, Istvan Angeli

DEBRECENI EGYETEM, ATOMKI-KISFIZ KÖZÖS SZEMINÁRIUM, 2025. MÁRCIUS 6.

NEMZETKÖZI ATOMENERGIAI ÜGYNÖKSÉG (IAEA)

Allendal

Savannah

Georgia

SOUTH CAROLINA HILLS MTS

LOW

Salkehatchie St. Andrews Charleston

Clemson, Dél-Karolina

\equiv

TRAVEL+

SUBSCRIBE

America's Best Small College Town Goes Big on School Spirit in a Tiny Corner of Upstate South Carolina

Clemson, South Carolina — home of Clemson University — has a growing downtown with a new hotel championing inclusivity.

VÁZLAT

- Magamról
- Motiváció újfajta atommag-töltéssugár mérésekre
- Nagytöltésű ionok
- Elektronnyaláb ioncsapda történet
- Nagytöltésű ionok spektroszkópiája
 - EUV, X-ray
- Atommag-töltéssugár felület
- Nagytöltésű ionokkal végzett töltéssugár mérések
 - Korábbi módszerek
 - Atommag-töltéssugár különbségek Na-szerű ionok
 - Abszolut atommag-töltéssugarak Na-szerű ionok
- Elemek közötti kényszerek
- További lehetőségek

MAGAMRÓL

1983-1989: Fizikus hallgató, Kossuth Lajos Tudományegyetem, Debrecen (témavezető: Angeli István)

- 1989 1992: Ph.D. ösztöndíj, ATOMKI Debreceni Egyetem (témavezetők: Ricz Sándor és Sulik Béla)
- 1992-1993: Soros post-doc ösztöndíj, Oxford University, Anglia
- 1993-1995: Postdoc állás, NIST, Washington, DC, USA
- 1995-1996: Magyari Zoltán Posztdoktori Ösztöndíj, Kísérleti Fizikai Tanszék, DE
- 1996-1999: Egyetemi Adjunktus, Kísérleti Fizikai Tanszék, DE, Kutató MTA-ATOMKI
- 1999-2001: Vendégkutató, MIT-NIST, Washington, DC, USA
- 2001-2012: Egyetemi Adjunktus, Kísérleti Fizikai Tanszék, DE
- 2012-2013: Egyetemi Docens, Kísérleti Fizikai Tanszék, DE
- 2013-2018: Associate Professor, Clemson Egyetem, Dél-Karolina, Vendégkutató NIST, Washington, DC, USA
 2019 Professor, Clemson Egyetem, Dél-Karolina, Vendégkutató NIST, Washington, DC, USA
 2024-2025: Alkotói év, Harvard-Smithsonian Center for Astrophysics, National Institute for Fusion Science, Japan

MOTIVÁCIÓ ÚJFAJTA ATOMMAG-TÖLTÉSSUGÁR MÉRÉSEKRE

TÖLTÉSSUGÁR ÉS ALAPVETŐ SZIMMETRIA TESZTEK

- Francium and radium are candidates in searches for physics beyond the Standard Model:
 - Ra-225: Permanent Electric Dipole Moments (EDM)
 - Fr: Atomic Parity Non-Conservation (APNC)
- The absolute charge radii of Fr and Ra were never directly measured.
- The absolute charge radius of Fr in the literature is obtained from extrapolations.
- * Need to determine absolute charge radius.

M. A. Bouchiat & C. Bouchiat, Rep. Prog. Phys. 60 (1997) 1351

KLASSZIKUS ATOMMAG TÖLTÉSSUGÁR MÉRÉSEK

4. Optical isotope shifts of neutral or single charged ator

2. Spectroscopy of muonic atoms

MOTIVÁCIÓ ÚJFAJTA ATOMMAG-TÖLTÉSSUGÁR MÉRÉSEKRE – NEHÉZ IONOK

- Except for a few isotopes, no **absolute** charge radius measurements for unstable isotopes exist heavier than Bi.
 - The absolute charge radii of francium, radium, and radon have never been measured.
 - <u>Apparent reason</u>: current techniques (electron scattering / muonic x-ray spectroscopy) need macroscopic quantities.

				10	00 Fm										
				9	9 Es										
	0	Few techniques deal with microscopic amounts (i.e., Ri elements).		9	8 Cf										
				9	7 Bk										
				9	6 Cm						Ð	0(эө		-0
				9	5 Am						Ð -				
	\circ	Storage-ring based electron scattering method is the only one addressing the	at 🛛	9	4 Pu				Ð	+	-00		·Ð		
	U		1	9	3 Np										
		(SCRIT project).		9	2 U		-	G G-	00		-00				
				9	1 Pa										
		90 Th		9	0 <i>Th</i>	Đ-		• O							
		89 Ac													
		88 Ra 00-0-0-0-0000000000	- 0- 0	·		-00-		€Θ-·	Ð						
		87 Fr 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-		-000		-00-	Θ	-0							
		86 Rn													
		winge (secondary) 85 At 128 129 130 131	132 133	134 135 13	86 137	138 139	140	141 142	143 14	4 145	146 14	7 148 1	49 15	0 151	152
		Wings (Secondary) 84 Po 84 Po													
		83 <i>Bi</i>													
82	Pb	0000000000000	0												
81	TI	00- <u>000-</u> 00-0000													
80	Hg	0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-													
79	Au														
78	Pt	ee	arv)												
77	Ir	-000000	ary)												
76	Os														
75	Re														
74	W	·····································													
73	Ta														10
72	Hf														10

KÉNYSZERFELTÉTELEK A MAGSUGÁR **FELÜLETEN**

Atomic Data and Nuclear Data Tables Volume 99, Issue 1, January 2013, Pages 69-95

Table of experimental nuclear ground state charge radii: An update

an her las

NAGYTÖLTÉSŰ IONOK

"Everyday atomic physics"

Optical transitions

Photon energy $\sim Z^2$ (E1)

X-ray transitions

Relativistic, QED & nuclear effects

"Physics of the core"

NIST ytterbium lattice clock

ELEKTRONNYALÁB IONCSAPDA TÖRTÉNET

Strategic Defense Initiative

Nicknamed as **Star Wars Program**, was first initiated on March 23, 1983 under President Ronald Reagan. The intent of this was to develop a sophisticated anti-ballistic missile system in order to prevent missile attacks from other countries, specifically the Soviet Union.

Mort Levine and Ross Marrs 1989 with the first EBIT

ELEKTRONNYALÁB IONCSAPDA TÖRTÉNET

Figure 1. The NIST EBIT, just before final assembly of the 6 major subsections (clockwise from the bottom: electron gun, drift tube assembly, collector, liquid helium insert, liquid nitrogen shield, outer vacuum can).

HCI spectroscopy

1992 NIST-NRL EBIT

ÚJ KOMPAKT EBIT-EK

Hoogerheide and Tan, Journal of Physics: Conference Series **583** (2015) 012044

OPTIKAI ATOMÓRA Ar¹³⁺ IONOKKAL (PTB ÉS MPI)

NAGYTÖLTÉSŰ IONOK ÉS ATOMMAG TÖLTÉSSUGÁR

NÁTRIUMSZERŰ IONOK

STATE-OF-THE-ART AB INITIO ELMÉLETEK (RMBPT, MCDHF, S-MATRIX)

	$\sigma(D_1)$	Unc.	$\sigma(D_2)$	Unc
Dirac Hartree Fock	1 559 528	37	6836929	41
B(1)	52 830	0	-1481	0
B(rpa)	-1238	0	-299	0
BB(rpa)	-127	0	15	0
Ret(1)	499	0	-8402	0
Ret(rpa)	53	0	-70	0
Other retardation	0	107	0	209
CC(2)	-2616	2	-354	1
BC(2)	-544	1	-265	0
CCC(3)	16	0	-7	0
Nuclear recoil	-68	25	-76	28
SE(val)	-73 091	3	-71 432	3
Uehling (val)	15009	0	17318	0
WK (val)	-657	62	-781	50
SE (val-exch)	983	14	1029	14
VP (val-exch)	-192	0	-200	0
SE (core rlx)	-1697	23	-814	11
VP (core rlx)	334	0	186	0
Other vertex	0	110	0	73
Two-loop Lamb (val)	238	96	222	90
Total	1 5/10 261		6771 510	240

TABLE III. Contributions (cm^{-1}) to the total calculated wave

Gillaspy et al., Physical Review A 87, (2013) 062503

19

QED Shift (cm⁻¹)

NÁTRIUMSZERŰ IONOK – KÍSÉRLETI MEGFONTOLÁSOK

Figure 1: (Left) Plot of transition energies from Z = 20 to Z = 92, with Na-like D1 $3s \, {}^{2}S_{1/2} \rightarrow 3p \, {}^{2}P_{1/2}$ [23] (red solid), Na-like D2 $3s \, {}^{2}S_{1/2} \rightarrow 3p \, {}^{2}P_{3/2}$ [23] (red dashed), Li-like $1s^2 2s \ ^2S_{1/2} \rightarrow 1s^2 2p \ ^2P_{1/2}$ [24] (blue solid), Li-like $1s^2 2s \ ^2S_{1/2} \rightarrow 1s^2 2p \ ^2P_{3/2}$ [24] (blue dashed), H-like $1s \ ^2S_{1/2} \rightarrow 2p \ ^2P_{1/2}$ [25] (green solid), and H-like $1s \ ^2S_{1/2} \rightarrow 2p$ $^{2}P_{3/2}$ [25] (green dashed). The shaded blue region indicates EUV range (3 to 30 nm). (Right) Plot of ionization potential necessary to create Na-like (red), Li-like (blue) and H-like (green) ions. The shaded blue region indicates the typical range of optimum Hosier et al., Journal of Physics B **57**, (2024) 195001 electron beam energies used to generate highly charged ions [26]).

NÁTRIUMSZERŰ IONOK MÉRÉSI MÓDSZEREI

NIST EBIT

X-ray

EUV

KÉT NÁTRIUMSZERŰ IZOTÓP D VONALÁNAK TÁVOLSÁGA

Silwal R et al., Phys. Rev. A 98 (2018) 052502; Silwal R et al., Phys. Rev. A 101 (2020) 062512

$$\begin{split} & \delta E_{k}^{A,A'}(Exp.) = E_{k}^{A} - E_{k}^{A'} = \text{Mass shift} + \text{Field shift} \\ & \delta E_{k}^{A,A'} = \delta E_{k,MS}^{A,A'} + \delta E_{k,FS}^{A,A'} \\ & = (\text{NMS} + \text{SMS}) \frac{(\text{M}' - \text{M})}{\text{MM}'} + \text{F}\lambda^{A,A'} \\ & \text{simbólumot (ennek négyzetgyőke a root-mean square: rms).} \end{split}$$

$$\delta E_{FS}^{A,A'} = F_0 \delta \langle r^2 \rangle^{A,A'} + F_2 \delta \langle r^4 \rangle^{A,A'} + F_6 \delta \langle r^6 \rangle^{A,A'} + F_8 \delta \langle r^8 \rangle^{A,A'} + \dots \\ & = \left[F_0 + F_2 \frac{\delta \langle r^4 \rangle^{A,A'}}{\delta \langle r^2 \rangle^{A,A'}} + F_6 \frac{\delta \langle r^6 \rangle^{A,A'}}{\delta \langle r^2 \rangle^{A,A'}} + F_8 \frac{\delta \langle r^8 \rangle^{A,A'}}{\delta \langle r^2 \rangle^{A,A'}} + \dots \\ & = F\delta \langle r^2 \rangle^{A,A'} \\ & = F\delta \langle r^2 \rangle^{A,A'} = \frac{\delta E_k^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ & \delta \langle r^2 \rangle^{A,A'} = \frac{\delta E_k^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ & \delta \langle r^2 \rangle^{A,A'} = \frac{\delta E_k^{A,A'}(Exp.) - \delta E_{k,MS}^{A,A'}}{F} \\ & \text{Steven Blundell RMBPT, Dipti GRASP2K)} \\ & \text{Steven Blundell RMBPT, Dipti GRASP2K} \end{split}$$

IZOTÓP TISZTA Xe¹³⁶ ÉS Xe¹²⁴ SEMLEGES ATOMOK EBIT-BE JUTTATÁSA

- both have zero magnetic moment
- no hyperfine effect
- discrepancy exists between muonic and optical measurements

ELSŐ KÍSÉRLET: ¹³⁶Xe and ¹²⁴Xe EUV SPEKTROSZKÓPIA 6 keV beam energy, 150 mA beam current alternating injection in every hour, 5 minutes spectra, for 5 days

IZOTÓP ELTOLÓDÁS

The systematic drift was fitted with an overall function of piece-wise 3rd order polynomials that included a shift between the isotopes (one hundredth of a pixel) TABLE I. Measured and calculated wavelength values of the isotope shift along with their uncertainties (in units of fm) for the Na-like D1 transition $3s^2S_{1/2} - 3p^2P_{1/2}$ for the isotope pair ¹³⁶Xe-¹²⁴Xe. The field shift was calculated using the evaluated value of 0.290 fm² for $\delta \langle r^2 \rangle^{136,124}$ by [20].

			Theor	у			
	RMB	РТ	GRASI	P2K	CIDF [29]	Expe	riment
Coefficients	δλ	Δδλ	δλ	Δδλ	δλ	δλ	$\Delta\delta\lambda$
NMS	-4.8	0.2	-4.8	0.2	-4.8		
SMS	- 62.2	3.4	- 62.3	3.4	- 62.7		
Total MS	-67.0	3.4	-67.1	3.4	-67.5		
FS	143.0	2.8	142.0	2.8	143.0		
Total	76.1	4.4	75.3	4.4	75.8	65.5	20.6 fn

Silwal R et al., Phys. Rev. A **98** (2018) 052502; Silwal R et al., Phys. Rev. A **101** (2020) 062512

MAGSUGÁR KÜLÖNBSÉG: ¹³⁶Xe – ¹²⁴Xe

Silwal R et al., Phys. Rev. A 98 (2018) 052502; Silwal R et al., Phys. Rev. A 101 (2020) 062512

 $\delta < r^2 > 136,124 = 0.269(42) \, \mathrm{fm}^2$

ABSZOLÚT MAG RMS TÖLTÉSSUGÁR D VONAL TÁVOLSÁGOKBÓL Hosier et al., Atoms **11** (2023) 48; Hosier et al., Journal Physics B, **57** (2024) 195001; Hosier et al., Physical Review Research, (2025) **In print**

Ir ÉS Os18 keV ELEKRONNYALÁB ENERGIÁN

EUV spectra of Na-like D1 3s ${}^{2}S_{1/2} - 3p \,{}^{2}P_{1/2}$ and Mg-like $3s^{2} \,{}^{1}S_{0} - 3s3p \,{}^{3}P_{1}$ transitions for both Os and Ir, in orange and blue respectively.

NÁTRIUMSZERŰ ENERGIASZINTEK POPULÁCIÓJA

The Ir and Os in the measurements have the natural abundance of their isotopes. \checkmark Isotope with odd number of nucleons exhibit HF structure. \checkmark

$$\Delta E = \frac{A}{2}K + \frac{B}{4}\frac{1.5K(K+1) - 2I(I+1)J(J+1)}{I(2I-1)J(2J-1)}$$

Os-184	0.02(1) %	Ir-191	37.3(2) %
Os-186	1.59(3) %	Ir-193	62.7(2) %
Os-187	1.96(2) %		
Os-188	13.24(8) %		
Os-189	16.15(5) %		
Os-190	26.26(2) %		
Os-192	40.78(19) %		
	Energy (in	meV)	

Fine-structure splitting

Hyperfine-structure splitting

HIPERFINOM SZERKEZET

Instrument resolution ~ 440 meV

EREDMÉNYEK: ¹⁹¹Ir ATOMMAG TÖLTÉSSUGARA

Hosier et al., Physical Review Research, (2025) In print

Units: eV						
	Os D1 [eV]		lr D1 [eV]		Ir-Os D1 [eV]	
R(rms):	5.4064	fm	5.4000	fm	(interpolation)	
						1
DF	167.470	(0)	171.025	(0)	3.5550	(0)
B(1)	4.746	(0)	4.977	(0)	0.2310	(0)
B(RPA)	-0.118	(0)	-0.122	(0)	-0.0045	(0)
BB(RPA)	-0.011	(0)	-0.012	(0)	-0.0007	(0)
Ret(1)	0.016	(0)	0.020	(0)	0.0045	(0)
Ret(RPA)	0.004	(0)	0.004	(0)	0.0003	(0)
Ret(other)	0.000	(11)	0.0000	(11)	0.0000	(3)
CC(2)	-0.300	(0)	-0.303	(0)	-0.0032	(0)
BC(2)	-0.053	(0)	-0.055	(0)	-0.0019	(0)
BB(2)	0.011	(0)	0.011	(0)	-0.0001	(0)
GGG(3)	0.005	(0)	0.005	(0)	0.0001	(0)
Nuc. Rec.	-0.007	(2)	-0.007	(2)	0.0000	(0)
RMBPT(tot)	171.762	(11)	175.543	(11)	3.7805	(3)
SE(val)	-6.387	(0)	-6.725	(0)	-0.3375	(0)
Uehl(val)	1.162	(0)	1.245	(0)	0.0825	(0)
WK(val)	-0.045	(4)	-0.049	(4)	-0.0041	(4)
SE(val-x)	0.090	(1)	0.094	(1)	0.0041	(1)
VP(val-x)	-0.016	(0)	-0.017	(0)	-0.0010	(0)
SE(core)	-0.153	(2)	-0.161	(2)	-0.0072	(1)
VP(core)	0.027	(0)	0.029	(0)	0.0017	(0)
Other(vert)	0.000	(10)	0.000	(11)	0.0000	(5)
2-loop	0.019	(7)	0.020	(7)	0.0013	(5)
QED(tot)	-5.304	(13)	-5.564	(14)	-0.2602	(8)
TOTAL	166.458	(17)	169.979	(18)	3.5204	(8)
		(38)		(40)		(18)
		(25)		(27)		(12)
TOTAL [no BB(2)]	166.447	(17)	169.968	(18)	3.5205	(8)

$$\delta R_{\mathrm{Ir}} = \frac{1}{S_{\mathrm{Ir}}} [\delta E_{\mathrm{Ir-Os}}^{\mathrm{exp}} - (E_{\mathrm{Ir}}^{\mathrm{th}}(R_{\mathrm{Ir}}) - E_{\mathrm{Os}}^{\mathrm{th}}(R_{\mathrm{Os}}))]$$

Uncertainty

$$\Delta(\delta R_{Ir}) = \left[\frac{(S_{Os}\Delta R_{Os})^2}{S_{Ir}^2} + \frac{\left(\Delta[E_{Os}(R_{Os,0}) - E_{Ir}(R_{Ir,0})]\right)^2}{S_{Ir}^2} + \frac{\left(\Delta E_{Os-Ir}^M\right)^2}{S_{Ir}^2} + (\delta R_{Ir})^2 \left(\frac{\Delta S_{Ir}}{S_{Ir}}\right)^2\right]^{1/2}$$

Nuclear model dependence $\rho(r,\theta,\phi) = \frac{\rho_0}{1 + exp[(r - c_{def})/a]} \quad c_{def}(\theta,\phi) = c[1 + \beta_2 Y_{20}(\theta,\phi)]$ $\delta E(R,\beta_2,t) = \delta R \frac{\partial E}{\partial R} + \delta \beta_2 \frac{\partial E}{\partial \beta_2} + \delta t \frac{\partial E}{\partial t}$ $\equiv S \delta R + S_{\beta_2} \delta \beta_2 + S_t \delta t$

	units	Na-like D_1
S	$eV fm^{-1}$	-0.4557
S_{β_2}	eV	0.0032
S_t	$eV fm^{-1}$	0.0025
S_2	${ m eV}~{ m fm}^{-2}$	-0.026
$\Delta \beta_2$		0.17
Δt	fm	0.1
$\delta R_{ m Ir}$	fm	0.04
$\Delta S/S$		0.5%

Included in ΔS

 $(\Delta S/S)\delta R_{\rm Ir} \approx 0.0016 {\rm fm}$

EREDMÉNYEK: Ir ATOMMAGOK TÖLTÉSSUGARA

Hosier et al., Physical Review Research, (2025) In print

Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)

EREDMÉNYEK: Ir ATOMMAGOK TÖLTÉSSUGARA Hosier et al., Physical Review Research, (2025) In print

ELEMEK KÖZÖTTI KÉNYSZERFELTÉTEL A MAGSUGÁR FELÜLETEN

wings (secondary)

backbone (primary)

Na-like ion Ir-Os measurement

JÖVŐ: TRIUMF's Ion Trap for Atomic and Nuclear Science (TITAN), Vancouver, Canada

Peter Mueller/Argonne National Laboratory

Ra-225

Time

EDM

Ra-225

JÖVŐ: XUV Frequency Combs, microcaloriemeter

A jövő napfényes! Köszönöm! etakacs@clemson.edu