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1 IntroductionLocal potentials have been used to model the interactions of the subatomicworld ever since the introduction of quantum mechanics. Some of these (likethe Coulomb potential) do not di�er essentially from the forces observed innature, while most of them (like the harmonic oscillator, for example) rep-resent approximations of the actual physical situation. The potential shape,de�ned by the potential type and the parameters in it is usually chosen in away that re
ects the physical picture our intuition associates with the prob-lem; therefore we can de�ne attractive or repulsive, short-range or long-rangepotentials, etc. The concept of potentials is deeply rooted in the thinking ofmost physicist. This is perhaps not surprizing, because the most elementaryexamples introduced at the dawn of quantum mechanics still form essentialpart of any quantum mechanical course, and also play a fundamental role inthe formulation of most physical models of the microscopic world.Some of the potentials used in quantum mechanics are exactly solvable.This means that the energy eigenvalues, the bound-state wavefunctions andthe scattering matrix can be determined in closed analytical form. The rangeof these potentials has been extended considerably in the recent years by in-vestigations inspired by some novel symmetry-based approaches. The conceptof solvability has also been extended: one can talk about conditionally exactlyor quasi-exactly solvable potentials too, in addition to the \classical" exactlysolvable examples. Due to these developments more and more interactionscan be modelled by making advantage of the increasingly 
exible potentialshapes o�ered by solvable potentials. Their solutions can be applied directly,or can be combined with numerical calculations. In the simplest case analyti-cal calculations can aid numerical studies in areas where numerical techniquesmight not be safely controlled. This is the case, for example, when bound-statewavefunctions with arbitrary node numbers are required, for certain singularpotentials, or for complex potentials. As the next level of complexity, ana-lytical solutions can supply a basis for numerical calculations. This makesexactly solvable problems indispensable even in the age of rapidly developingcomputational resources.Besides their role in describing realistic physical problems, solvable quan-tum mechanical potentials also represent an interesting �eld of investigation intheir own right. This is largely due to the mathematical elegance and beautyassociated with the symmetries of these problems. Symmetries and invarianceproperties are among the most characteristic features of any physical system.They usually give a deeper insight into the physical nature of the problem,2



but also help their mathematical formulation. Symmetries typically lead tocharacteristic patterns in the energy spectrum of the system. These featuresare shared by the \classic" potential problems of non-relativistic quantum me-chanics. Technically these are relatively simple systems, and accordingly theyinclude a number of exactly solvable examples, nevertheless, they representthe showcase of a wide variety of symmetry and invariance concepts. Themost widely known symmetries of quantum mechanical potentials are basedon group theory (in particular, Lie algebras), supersymmetry and PT symme-try.In group theoretical approaches [1, 2] the elements of various algebras con-nect di�erent eigenstates of the same Hamiltonian or some interrelated Hamil-tonians, while the states themselves belong to the irreducible representationsof the corresponding group. A less immediate application of the concept ofsymmetry appears in supersymmetric quantum mechanics (SUSYQM) [3, 4],where supersymmetry relates two Hamiltonians which typically have (essen-tially) identical spectra. The most recent symmetry concept is the so calledPT symmetry of one-dimensional quantum mechanical potentials [5], whichsurprized the theoretical community with non-Hermitian problems possessingreal energy spectra.My purpose with the present work was to investigate solvable potentialsfrom the viewpoint of various symmetry concepts and to explore how thesesymmetries are related to each other. My intention was to discuss the proper-ties of quantum mechanical problems in the most general framework wheneverit was possible. By this I mean that I tried to start with postulating somegeneral construction (an ans�atz for the solutions, the di�erential realization ofoperators, etc.) and to derive know results as special cases, hoping also thatthe general procedure leads also to new results.Throughout this theoretical work, I was also aware of the importance ofsolvable problems in describing realistic physical problems, and I proposed theutilization of some of my results in this �eld [P3, 6, P5, 7]. Since my scienti�cbackground is in theoretical nuclear physics, I picked most of the prospectiveapplications from this �eld. My activity in the �eld of algebraic models ofnuclear structure (from where half of my publications originate) prompted meto use my results in describing various cluster{cluster interactions [6] or indeveloping a high-precision Green-operator method to determine bound andresonance states of the � � � system [7]. However, I did not include theseworks among the thesis points of my dissertation, because I wanted to keepthe homogeneity of the latter as a purely theoretical work. (This also meansthat occasionally my results were beyond the scope of theoretical physics, as I3



found some previously unknown mathematical relations [P16].)My background in theoretical nuclear physics also determined the methodsI was using, i.e. group theory and supersymmetry. My experience in describingcomplex nuclear physical systems in terms of these symmetry-based methodswas of considerable help in discussing various symmetry aspects of quantummechanical potentials too.The structure of the dissertation is the following. In section 2 a general in-troduction is given to solvable potentials of quantum mechanics, with specialemphasis on symmetry-based approaches. Besides citing the essential factsfrom the literature, this section also contains some of my earlier results notincluded in the theses of the present dissertation. Section 3 contains my mainresults. These are arranged into �ve parts: in subsection 3.1 non-trivial exam-ples are presented for the solution of the one-dimensional Schr�odinger equationand related problems, subsections 3.2, 3.3 and 3.4 contain my results concern-ing supersymmetric techniques, Lie-algebraic methods and PT symmetry inthe description of solvable potentials, while in subsection 3.5 the interrelationof these symmetry concepts is discussed. Finally, the summary in section 4lists the main results of the dissertation according to the thesis points.In an e�ort to help the reader I separated typographically those parts,which are less important and can be skipped at the �rst reading. I also startedmost subsections by �rst stating the purpose of the work presented there andpointing out the key motifs.
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2 An overview of solvable potentialsThis section contains the essential background information necessary for thepresentation of my results in section 3. The works cited here include some ofmy earlier results, which do not appear among my thesis points.2.1 General aspects of solvable potentialsVarious strategies of solving the Schr�odinger equation can be used, depend-ing on the nature of the potential. The solutions of the most well{knownpotentials can be obtained by transforming the Schr�odinger equation into thedi�erential equation of some special functions of mathematical physics. This isthe case for the Natanzon class of potentials [8], for example, the solutions ofwhich are related to hypergeometric (or con
uent hypergeometric) functions.In some other cases the wavefunctions cannot be written in terms of such spe-cial functions, nevertheless the techniques described below can still be appliedto them.The procedure presented here was �rst used to derive some simple poten-tials [9], but later it was developed further by Natanzon who applied it sys-tematically to transform the Schr�odinger equation into the di�erential equationof the hypergeometric and con
uent hypergeometric functions [8]. Followingthe discussion of [10, 11], let us consider transformation of the Schr�odingerequation d2 dx2 + (E � V (x)) (x) = 0 (1)into the second-order di�erential equation of a special function F (z). For this,we search for the solutions in the form (x) = f(x)F (z(x)) : (2)At the moment we do not specify the domain of de�nition for the coordinatex itself. Later on we shall come back to this issue and its importance for PTsymmetric problems.Once we substitute (2) in the Schr�odinger equation (1), we arrive at theordinary di�erential equation of the special function F (z)d2Fdz2 +Q(z)dFdz +R(z)F (z) = 0 (3)where, by construction z00(z0)2 + 2f 0z0f = Q(z(x)) (4)5



and f 00(z0)2f + E � V (x)(z0)2 = R(z(x)) : (5)From these equations an explicit expression follows for E � V (x):E � V (x) = (z0(x))2R(z(x))� 0@ f 0(x)f(x) !2 + ddx  f 0(x)f(x) !1A (6)= z000(x)2z0(x) � 34  z00(x)z0(x) !2 + (z0(x))2  R(z(x))� 12 dQdz � 14Q2(z(x))! :(7)Besides the functions Q(z) and R(z) de�ning the special function F (z), (7)contains only the function representing a variable transformation, z(x). Thisalso applies to the solutions themselves: (x) � (z0(x))� 12 exp 12 Z z(x)Q(z)dz!F (z(x)) : (8)We are left with the task of �nding a functional form of z(x) which transformsthe Schr�odinger equation (7) into an exactly solvable problem.Of course, any randomly chosen z(x) function satis�es the latter ambitiousrequirement for a particular potential V (x) and energy E. We only cannotguarantee in general that any other physical solution of the same physicalproblem can be found in the same manner as well. In this perspective, a usefulway of �nding reasonable z(x) functions has been proposed by Bhattacharjieand Sudarshan [9]. According to them, if there is a constant (E) on the left-hand side of (7), then there must be one on the right-hand side too. In [10]this fact was exploited, and a systematic list of potentials was compiled byidentifying certain terms found on the right-hand side of (7) with a constantC. This assignment leads to �rst-order di�erential equations for z of the type dzdx!2 �(z) = C ; (9)where �(z) is a function of z originating from R(z) or Q(z).The general solution of the latter di�erential equation is given by formulaZ �1=2(z)dz = C1=2x+ � : (10)This de�nes an implicit function x(z) and, in many cases of practical interest,also the explicit z(x) function we need [10]. Usually � = 0 is considered in order6



to set z(0) = 0. The � 6= 0 choice corresponds to a shift of the coordinate andre
ects a trivial and also rarely relevant transformation for potentials de�nedon the real x axis, but we shall �nd it important in connection with PTsymmetric potentials discussed later on in subections 2.4 and 3.4.The general Natanzon class potentials can be obtained from a systematicapplication of this transformation procedure to the hypergeometric and con-
uent hypergeometric functions. (In the latter case potentials are sometimescalled Natanzon con
uent potentials [12].) Starting from hypergeometric func-tions the most general potential can be written as [8]V (z(x)) = �12 z000z0 + 34  z00z0 !2 + fz(z � 1) + h0(1� z) + h1zR(z) ; (11)where R(z) = a1z(z � 1) + c1z + c0(1� z): (12)z(x) is then determined from the di�erential equationdzdx = 2z(1� z)R1=2(z) ; (13)which is determined from the current version of (9) after identifying the linearcombination of three independent terms on its right-hand side with a constant.The three coe�cients (a1, c1 and c0) govern the behaviour of z(x) and supplythree of the six potential parameters. (The other three parameters are f ,h0 and h1 in (11).) In general, there is no explicit expression for the energyeigenvalues, rather they can be determined from the implicit formula2n+ 1 = (f + 1� a1En)1=2 � (h0 + 1� c0En)1=2 � (h1 + 1� c1En)1=2� �n � �n � �n; (14)while the wavefunctions are written as n(x) ' R1=4(z(x))(z(x))�n=2(1�z(x))�n=2 2F1(�n; �n�n; �n+1; z(x)): (15)Natanzon con
uent [12] potentialsV (h(x)) = �12 h000h0 + 34  h00h0 !2 + g1h2 + g1h+ �R(h) ; (16)with R(h) = �2h2 + �1h + c0 can be obtained from (11) by the substitutionsa1 = �2=� 2, c1 � a1 � c0 = �1=� , h1 � h0 � f = g1=� , z = h� and taking thelimit � ! 0. 7



Although equations (11) to (15) contain all the necessary formulae to getthe solutions of any Natanzon class potential, calculations become rather in-volved in general. In many cases, for example, it is impossible to get z(x), thesolution of (13) in closed form, rather only an implicit x(z) function can bedetermined. This is the case for the so-called \implicit" potentials, like theGinocchio [13], the generalized Ginocchio [14], the PIII [15] or the (Natanzoncon
uent type) generalized Coulomb potential [16]. Once knowing x(z), z(x)can, of course, be determined to any desired accuracy. Similarly, En is alsocontained implicitly in (14) in general, as is the case for the potential in [17].These complications hinder the application of these formulae, except forsome special subcases, which correspond to the most well-know textbook ex-amples for solvable potentials. These are the so-called shape-invariant po-tentials [18], the de�nition of which will be given later in subsection 2.2, inconnection with supersymmetric quantum mechanics. However, consideringthem in the context of the Natanzon potential class, there is a simple rulethat identi�es them. In particular, they correspond to cases in which onlyone of the parameters a1, c0 and c1 (in (12)) is non-zero, and this results astraightforward solution for both z(x) and En from equations (13) and (14),respectively. Table 1 lists the known shape-invariant potentials following thepresentation of [10], which was the �rst complete (as it is known presently)compilation of these potentials, and where a natural classi�cation scheme wasalso proposed for them. In [10] shape-invariant potentials have been obtainedfrom a systematic application of the method described previously to orthog-onal polynomials. Substituting the Jacobi, generalized Laguerre and Hermitepolynomials [19] in (2) as F (z) and identifying certain terms on the right-handside of (7) with the constant (energy) term has led to di�erential equationsof the type (9) which de�ned a straightforward classi�cation scheme of thesepotentials. The resulting potentials are displayed in table 1, along with thedi�erential equations de�ning the individual classes [10].It has to be noted that there is some redundancy in the shape-invariant po-tentials listed in table 1. The generalized P�oschl{Teller and the P�oschl{TellerII potentials are essentially identical, as are their trigonometric versions, theP�oschl{Teller I and the Sacrf I potentials, as can be seen from the corre-sponding z(x) functions, which di�er only in an x$ 2x scale transformation.Also, the radial and the one-dimensonal harmonic oscillators di�er from eachother in the boundary conditions. These redundant potentials are still oftenmentioned as separate examples due to historical reasons.The \implicit" and other potentials mentioned earlier occupy an interme-8



Table 1: The 12 shape-invariant potentials and their interpretation asNatanzon-class potentials. The classes denoted with P, L and H correspond topotentials containing the Jacobi, generalized Laguerre and Hermite polynomi-als in their bound-state solutions.Di�. eq. (Class) V (x) Namez(x)(z0)2(1�z2) = C (PI)i sinh(ax), C = �a2 A2 + (B2 �A2 �Aa)sech2(ax) Scarf IIB(2A+ a)sech(ax) tanh(ax)cosh(ax), C = �a2 A2 + (B2 +A2 +Aa)cosech2(ax) generalized�B(2A+ a)cosech(ax) coth(ax) P�oschl{Tellercosh(2ax), C = �4a2 (A�B)2 �A(A+ a)sech2(ax) P�oschl{Teller II+B(B � a)cosech2(ax)cos(ax), C = a2 �(A+B)2 +A(A� a) sec2(ax) Scarf I+B(B � a)cosec2(ax)cos(2ax), C = 4a2 �(A+B)2 +A(A� a)sec2(ax) P�oschl{Teller I+B(B � a)cosec2(ax)(z0)2(1�z2)2 = C (PII)tanh(ax), C = a2 A2 +B2=A2 + 2B tanh(ax) Rosen{Morse II�A(A+ a)sech2(ax)coth(ax), C = a2 A2 +B2=A2 � 2B coth(ax) Eckart+A(A� a)cosech2(ax)�i cot(ax), C = �a2 �A2 +B2=A2 � 2B cot(ax) Rosen{Morse I+A(A+ a)cosec2(ax)(z0)2=z = C (LI)!2 x2 , C = 2! 14!2x2 + l(l+1)x2 � (l + 32)! radial HO(z0)2 = C (LII)e2n+l+1x, C = e4(n+l+1)2 e44(l+1)2 � e2x + l(l+1)x2 Coulomb(z0)2=z2 = C (LIII) A2 �B(2A+ a) exp(�ax) Morseexp(�ax), C = a2 +B2 exp(�2ax)(z0)2 = C (HI)(!2 )1=2(x� 2ba ), C = !=2 �12! + 14!2x2 one-dim. HO
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diate situation between the general Natanzon (con
uent) potentials and theirshape-invariant subclass. In particular, for potentials in [13, 15, 16] two of thethree parameters determining the variable transformation z(x) (in (12) and(13)) are non-zero, which simpli�es the determination of En from (14), butresults an implicit x(z) function. The potentials in [17] represent another kindof special case, in some sense opposite to the previous examples, as a specialarrangement of these three parameters (a = 4c1 = 4c0) leads to an explicit z(x)function, but at the same time results a complicated implicit energy formula.In principle, the Woods{Saxon potential [20] has similar characteristics, butdue to the boundary conditions its energy eigenvalues have to be determinedfrom a transcendent equation.While still manageable algebraically, these Natanzon-class potentials o�erpotential shapes di�erent from the simplest solvable problems. For example,the Ginocchio [13, 14] and the generalized Coulomb [16] potential are similar tosome nuclear physical and screened Coulomb potentials, respectively, while thePIII potential of [15] corresponds to some typical molecular physical potentialwith a \pocket". This 
exibility of shape also means that the Ginocchio [13, 14]and the generalized Coulomb [16] potentials have shape-invariant limits.The simple transformation procedure outlined previously can be applied toany other function satisfying second-order di�erential equations of the form (3).It is possible to transform the di�erential equation of the Bessel functions intothe Schr�odinger equation with the potential V (r) ' exp(�r=a) (with l = 0)and that of a particle enclosed in a sphere [20], however, the Bessel functionsare less appropriate for this treatment than the orthogonal polynomials. Onereason is that the R(z) function in (3) and (7) has more complex structure,R(z) = 1� �2=z2, and this indirectly means that the wavefunctions are moredi�cult to handle, furthermore, the energy eigenvalues cannot be written in aclosed form, rather they have to be determined from the zeros of the Besselfunctions.In some cases the Schr�odinger equation cannot be solved by the transfor-mation procedure used previously, as the wavefunctions cannot be written interms of known special functions. An example for this situation is the family ofquasi-exactly solvable (QES) potentials [21]. These potential problems cannotbe solved exactly in general, except for some special values of the parameters,when a �nite number of exact energy eigenvalues and eigenfunctions can bedetermined. Typical examples for QES potentials are anharmonic oscillatorsand polynomial-type potentials. In this case the basis states are constructedas polynomials times an exponential factor containing also polynomials. Sub-stituting them into the Schr�odinger equation and then matching the terms10



with various powers typically leads to recursion relations for the coe�cientsappearing in the basis states. The recursion series can then be terminated byan appropriate choice of the parameters, which means that the �rst few basisstates can be obtained in closed form.The most recent concept of solvability is related to conditionally exactlysolvable (CES) potentials. The �rst models coined CES potentials [22, 23] werecharacterized by the fact that the coupling constant of some potential term hadto be �xed to a numerical constant value in order to obtain their solutions.Some of these potentials [24] can be obtained by the ad hoc modi�cationof the Natanzon con
uent potentials, e.g. by changing the powers of h in(16). The techniques of supersymmetric quantum mechanics (to be reviewedin subsection 2.2) o�er further ways to generate exactly solvable potentialsfrom known ones, some of which have been classi�ed as CES potentials [25].2.2 Supersymmetric quantum mechanicsSupersymmetric theories describe bosons and fermions in a uni�ed way, there-fore their algebraic formulation makes use of commutators as well as anticom-mutators. These theories appeared �rst in quantum �eld theoretical studies,where they turned out to be less divergent than conventional theories. How-ever, if supersymmetry exists in nature, then it must be broken, because thereis no evidence for degenerate boson{fermion multiplets, and this fact has gen-erated interest in supersymmetry breaking mechanisms. This is how super-symmetric quantum mechanics (SUSYQM) was born [26], but it soon beganto live its own life.In quantum mechanics the most widely used construction is N = 2 super-symmetry, in which the supersymmetric Hamiltonian H and the Q and Qysupersymmetric charge operators satisfy the following relations [3, 4]fQ;Qyg = H Q2 = (Qy)2 = 0[Q;H] = [Qy;H] = 0; (17)i.e. the charge operators are nilpotent and commute with the supersymmetricHamiltonian.The realization of this superalgebra is usually given in terms of 2� 2 ma-trices: Q = � 0 0A 0� ; Qy = � 0 Ay0 0 � ; (18)
11



where A and Ay are some operators to be speci�ed later. These matricestogether with H = �AyA 00 AAy � � �H� 00 H+ � (19)represent a realization of the algebra (17), which is also recognized as thesl(1=1) Lie superalgebra. Based on the above matrix realization of these op-erators we can interpret the supersymmetric Hamiltonian H as a compositionof two scalar Hamiltonians H� and H+, which act in the \bosonic" and the\fermionic" sector of the two{component basis states. These two sectors areconnected by the charge operators asQ� (�)0 � = � 0A (�) � ; Qy � 0 (+) � = �Ay (+)0 � ; (20)where  (�) and  (+) stand for eigenstates of the \bosonic" Hamiltonian H� =AyA and the \fermionic" Hamiltonian H+ = AAy. H� and H+ are calledsupersymmetric partners.The existence of the superalgebra (17), and in particular, that of the su-persymmetric charges commuting with the supersymmetric Hamiltonian hasimportant implications regarding the energy spectra of H� and H+ [3, 4]. Firstof all, it follows from their construction that the eigenvalues of H� = AyA andH+ = AAy are non{negative. Let us assume that  (�) and  (+) are normalizedeigenfunctions of H� and H+, with eigenvalues E(�) and E(+), respectively:H� (�) = E(�) (�) H+ (+) = E(+) (+): (21)The simple equationH+(A (�)) = AAy(A (�)) = AH� (�) = E(�)A (�) (22)clearly shows that E(�) is also an energy eigenvalue of H+, and the correspond-ing normalized eigenfunction is (+) = (E(�))�1=2A (�); (23)except when A (�) = 0 holds. Similar arguments apply to the reverse situationwhen the roles of H� and H+ are exchanged:H�(Ay (+)) = AyA(Ay (+)) = AyH+ (+) = E(+)Ay (+); (24)i.e. E(+) is an allowed eigenvalue of H� too, with the normalized eigenfunction (+) = (E(+))�1=2Ay (+); (25)12



Figure 1: Schematic sketch of the possible arrangement of the energy spectraof the supersymmetric partner potentials H� and H+.
E = 0 a b cexcept when Ay (+) = 0 holds.This kind of relationship between the supersymmetric partner Hamiltoni-ans leads to three possible patterns of their energy spectra. (See �gure 1).i)Whenever A (�)0 = 0 holds for a normalizable eigenstate ofH�,H� (�)0 =AyA (�)0 = 0 implies that this eigenstate is also the ground state of H� withE(�)0 = 0 eigenenergy. This argument holds in the reverse direction too, as0 = E(�)0 = h (�)0 jAyAj (�)0 i = jAj (�)0 ij2 leads to A (�)0 = 0. In this caseH+ has no normalizable eigenstate with zero energy, and we get the situationdepicted in panel a of �gure 1 withE(�)n+1 = E(+)n ; n = 0; 1; 2; :::; E(�)0 = 0: (26)The eigenstates of H� and H+ lying at the same energy are related to eachother as  (+)n = (E(�)n+1)�1=2A (�)n+1 and  (�)n+1 = (E(+)n )�1=2Ay (+)n .ii) The same line of reasoning applies to the case in which the roles of H�and H+ are interchanged and the energy spectra are similar to those shown inthe b panel of �gure 1.iii) If neither H� nor H+ have normalizable eigenstate with zero energy,the spectra of H� and H+ turn out to be identical, as shown in the c panel of�gure 1. This case is known to correspond to broken supersymmetry.Until this point the operators were considered as abstract mathematicalquantities which satisfy some prescribed relations, and were not speci�ed inmore detail. Now we shall consider a speci�c di�erential realization of A andAy from which the one{dimensional Schr�odinger equation (with �h = 2m = 1)can be recovered:H� (�)(x) =  � d2dx2 + V�(x)! (�)(x) = E(�) (�)(x): (27)13



One possible choice for this isA = ddx +W (x); Ay = � ddx +W (x); (28)which recovers (27) with the potentialsV�(x) = W 2(x)� ddxW (x): (29)W (x), the superpotential is uniquely related to the ground{state wavefunctionof H� via A (�)0 = 0: W (x) = � ddx ln (�)0 (x); (30)or  (�)0 (x) = N0exp�� Z xW (y)dy� ; (31)where N0 is a normalization constant.An immediate consequence of these results is that whenever the solutionsof a one-dimensional potential V�(x) are known, the solutions of its supersym-metric partner potentialV+(x) = V�(x)� 2 d2dx2 ln (�)0 (x) (32)can also be obtained, furthermore the bound-state energy spectrum of the twopotentials are related by (26). This procedure can be followed for any potential(after possibly a simple shift of the energy scale setting E(�)0 = 0), furthermoreit can be applied to potentials solved by either analytical or numerical methods.A further remarkable aspect of SUSYQM is that a whole series of isospec-tral solvable potentials can be constructed by consecutive application of thisprocedure. Adjacent members of this hierarchy of potentials are supersym-metric partners, and each potential has one less bound state than the oneconstructed at the previous stage.Here we may note that (6) o�ers a straightforward connection to the for-malism of SUSYQM. In particular, whenever R(z) vanishes for the groundstate, we have E � V (x) = �W 2(x) + dWdx ; (33)with the superpotential beingW (x) = � ddx ln f(x) (34)= �12Q(z(x))z0(x) + 12 z00(x)z0(x) : (35)14



The condition Rn=0(z) = 0 always holds for the orthogonal polynomials, mak-ing them an ideal subject of the SUSYQM approach.Despite their similar bound-state energy spectra, supersymmetric partnerpotentials constructed by (32) usually have di�erent structure (both in thegeometric and algebraic sense). In some cases, however, V�(x) and V+(x) havethe same functional dependence on the coordinate and di�er only in somepotential parameters which set their depth and shape. This is the case with theshape-invariant potentials [18] mentioned previously in subsection 2.1. Thesepotentials are de�ned by the relationshipV+(x; a0)�V�(x; a1) � W 2(x; a0)+W 0(x; a0)�W 2(x; a1)+W 0(x; a1) = R(a1);(36)where a0 and a1 stand for parameters of the supersymmetric partner potentials,and R(a) is a constant. The two sets of potential parameters a0 and a1 areconnected by simple mathematical formulae written formally asa1 = f(a0): (37)This f function turned out to be a simple addition: ai+1 = ai + const: for theshape-invariant potentials [18]. Equation (36) shows that for shape-invariantpotentials the consecutive application of a SUSY transformation (32) and achange of the potential parameters as in (37) recovers the original potential,apart from an energy shift. It can be shown [18] that the discrete energyspectrum of V�(x; a0) can be written asE(�)n = nXk=1R(ak); (38)where ak is generated by the consecutive application of f in (37):ak = fk(a0): (39)Besides their energy eigenvalues, the wavefunctions of these shape-invariantpotentials can also be computed in a straightforward way. Combining the factthat these potentials have the same functional form and that a whole hierarchyof potentials can be generated in terms of SUSYQM, it was shown [27] that thewavefunctions  (�)n (x; a0) of potential V�(x; a0) can be obtained by consecutiveapplication of the SUSYQM laddering operators Ay(x; ak), as (�)n (x; a0) = N0Ay(x; a0)Ay(x; a1):::::Ay(x; an�1) (�)0 (x; an): (40)15



As it has been mentioned already in subsection 2.1, shape-invariant poten-tials turned out to play a distinguished role among solvable potentials. This ismainly due to their feature that acting on their bound-state wavefunctions withthe linear di�erential operators A, the resulting function can be rewritten interms of a single wavefunction of the type (2), i.e. it is recovered in essentiallythe same form as the original wavefunction, except for the potential param-eters appearing in it. This is not the case for the general Natanzon-class [8]potentials: in that case the resulting wavefunction contains two terms with twoseparate special function of the type F (z), i.e. the partner potential V+(x) isoutside the Natanzon class. This peculiar feature of shape-invariant potentialsprompted a search for potentials with this property. Several attempts havebeen made to identify and classify all shape-invariant potentials [28, 10, 29]and the results suggest that �nding such potentials in addition to the knownones listed in table 1 is unlikely. It was also shown [30] that several of these12 potentials have been \rediscovered" in one way or another. In addition tothe bound-state spectra and the wavefunctions of these potentials scatteringamplitudes have also been calculated [31] for them.It is notable that the classi�cation scheme followed in table 1 [10] is basicallythe same as that of Infeld and Hull [32] based on the factorization method[33] and that of Miller [34] originating from the Lie theory of special functions,while it di�ers from the classi�cation scheme of Cooper et al. [28] which wasderived following the ideas of SUSYQM.We note that there were attempts to generalize the concept of shape-invarianceto systems where the f function in (39) is a multiplicative, rather than anadditive function [35], but this hasn't resulted in meaningful potentials.As it has been mentioned previously, eliminating the ground state of apotential is only one of the possible transformations handled by SUSYQM(see �gure 1). The remaining cases, i.e. altering the potential while insertinga new ground state or leaving the spectrum unchanged can be implementedin a similar way, except that instead of the ground-state wavefunction, someunphysical (but nodeless) solutions have to be used. The boundary conditionsof these solutions will then determine the e�ect of the SUSY transformationon the energy spectrum and on the potential [36, 37].Here we consider the radial Schr�odinger equationH (r) =  � d2dr2 + V0(r)! (r) = E (r); (41)16



but a similar treatment of the one-dimensional motion (�1 < x < 1) canalso be formulated by imposing di�erent boundary conditions on the physicalsolutions of (41) [38]. In what follows we assume that V0(r) already containsthe centrifugal term l(l + 1)r�2 with an orbital angular momentum l whichremains �xed, and that V (r) behaves like V (r) ' m(m + 1)r�2 near the ori-gin, where m is a positive integer, i.e. it can have additional singularity ifm 6= l holds. We also change the notation somewhat: potentials (Hamiltoni-ans) linked by these transformations may still be considered supersymmetricpartners, nevertheless their labelling with + and � may become confusing insome situations, therefore we shall abandon these symbols.Consider the factorizationH = Ay(�)A(�) + � (42)of H in (41), with A(�) = (Ay(�))y = � ddr + ddr ln�; (43)where � is a solution of H� = ��. �(r) need not be a physical solution in orderto generate reasonable potentials in this more general approach, however ithas to be nodeless, otherwise the resulting potential would have singularitiesfor r 6= 0. Following the procedure presented previously in this section, theSUSY partner of V0(r) in (41) can be de�ned asV1(r) = V0(r)� 2 d2dr2 ln�(r); (44)with the di�erence that �(r) may be di�erent from the ground-state wave-function. If we take � = E0 and �(r) =  0(r), we, of course, arrive at thespecial case discussed in in detail previously, i.e. the transformation whicheliminates the ground-state wavefunction of V0(r), but leaves the rest of theenergy spectrum unchanged.The nodelessness of �(r) can be secured if we consider a factorization energy� = �
2 < E0 (with 
 > 0). In contrast with the usual procedure for physicalsolutions, now we can consider two independent solutions of H� = �� = �
2�.Taking appropriate linear combinations of the two independent solutions, fourtypes of solutions can be constructed, depending on whether they are regularor irregular at the origin and asymptotically.These four types of transformations (denoted usually by T1, T2, T3 and T4[36]) have characteristic e�ect on the singularities of the potentials near the17



Table 2: SUSYQM transformations belonging to di�erent types of solutions�(r) [36, 37]. Here � = �
2 � E0.Transformation T1 T2 T3 T4� � = E0 � < E0 � < E0 � < E0limr!0� rm+1 r�m rm+1 r�mlimr!1� exp(�
r) exp(
r) exp(
r) exp(�
r)Spectrum deletes ground adds new ground none nonemodi�cation state state (0 < m) (0 < m)Singularity (m + 1)r�2 �mr�2 (m + 1)r�2 �mr�2modi�cationPhase shift � tan�1(k=
0) � tan�1(k=
) � tan�1(k=
) � tan�1(k=
)modi�cation
origin, as well as on the phase shifts of the scattering wavefunctions. Thesequantities are related to the boundary conditions of the solution �(r) of H� =��, as simple calculations starting from equations (43) and (44) reveal in eachcase. The results are summarized in table 2 [37]. Note that transformationsT2 and T4 work only if m > 0 holds, i.e. if the original potential V0(r) hasalready had a singularity.It has to be mentioned here that there is a conceptual di�erence between Suku-mar's [36] and Baye's [37] interpretation of the four types of transformations.Sukumar originally assumed that these transformations change the angularmomentum with one unit, which accounts for the di�erence of the singularitybetween V0(r) and V1(r). However, Baye has pointed out that the value of theorbital angular momentum has already been set when the radial Schr�odingerequation (41) was written down [37], therefore the centrifugal term shouldremain unchanged during the whole procedure.These results can be applied to the one-dimesional motion too, after modi�ca-tion of the boundary conditions [36], i.e. getting rid of x�2-like singularities.Finally, it has to be noted that although here we have formulated thesetransformations in terms of the factorization method which is closer to theformalism of SUSYQM, the whole procedure can also be recognized as the18



Darboux transformation [39] of second-order di�erential equations. A briefreview on various approaches to isospectral potentials in terms of the Darbouxconstruction can be found in [40], for example.An even more sophisticated supersymmetric construction can be obtainedby iterating the single SUSY transformations mentioned up to this point. Us-ing pairs of such transformations one can construct [37] potentials that leadto the same phase shifts as the original potential, despite the di�erent numberof bound states the two potentials support, and this result was interpretedin terms of the generalized Levinson theorem [41]. This aspect of SUSYQMalso allowed straightforward interpretation of the long standing problem rep-resented by the duality of \deep" and \shallow" type potentials used in thedescription of interacting composite particles. The relation of SUSYQM toother methods of analyzing isospectral potentials, such as the inverse scatter-ing theory [42] has also been discussed [36, 43, 11].More recently the formalism of generating phase-equivalent potentials hasbeen developed to a stage where, in principle, arbitrary modi�cations of theenergy spectrum are possible [44, 43, 45]. The �nal potential and the wavefunc-tions are expressed in terms of compact formulae depending on integrals anddeterminants composed of physical and unphysical solutions of the Schr�odingerequation. These expressions can be evaluated by numerical techniques in gen-eral.Pairs of single SUSY transformations can be employed to generate po-tentials phase-equivalent with the original one provided that the factoriza-tion energies are chosen to be equal, guaranteeing that the original scatteringphases are restored after the second step. For the resulting transformation,the factorization energy is not anymore required to be smaller than E(0)0 , theground-state energy of V0(r). As described in [44], for example, only threenon-trivial combinations are possible, and the resulting potential is written asV2(r) = V0(r) + 2 ddr ('0(k0; r))2� + R1r ('0(k0; t))2dt : (45)The appropriate choices of '0(k0; r) and � are summarized in table 3, where theproperties of the three basic transformation types are also given. In table 3,  (i)0represents the wavefunction of an arbitrary bound state at energy E(i)0 = k(i)20while f0 represents a solution decreasing at in�nity and singular at the origin,at any negative energy E0 = k20 where there is no bound state. The integral inthe denominator of (45) always converges because the chosen '0(k0; r) decreaseexponentially at large r, in all cases. The wavefunctions of V2(r) are expressedin terms of the original wavefunctions '0(k; r) and the (physical or unphysical)19



Table 3: Properties of the three transformations resulting in potentials phase-equivalent with the original potential V0(r). We suppose that V0(r) is singularat the origin as V0(r) ' m(m+ 1)r�2, which accounts for the centrifugal termtoo.Transformation Removes a bound Adds a bound state Unchangedstate (m > 1 only) spectrumSolution '0  (i)0 f0  (i)0Parameter � �1 � > 0 �=(1� �), � > 0Fact. energy E0 E(i)0 < 0 E0 6= E(i)0 , E0 < 0 E(i)0 < 0limr!0'0 rm+1 r�m rm+1limr!1'0 exp(�jk(i)0 jr) exp(�jk0jr) exp(�jk(i)0 jr)Singularity of V2 (m + 2)(m+ 3)r�2 (m� 2)(m� 1)r�2 m(m + 1)r�2F2(k)=F0(k) k2=(k2 + jk(i)0 j2) (k2 + jk0j2)=k2 1factorization functions '0(k0; r) as'2(k; r) = N� 12�'0(k; r)� '0(k0; r)R1r '0(k0; t)'0(k; t)dt� + R1r ('0(k0; t))2dt � : (46)Here N = 1, except for k = k0 when '2(k0; r) is physical, in which case N = �[11]. Further potentials phase-equivalent with V0(r) can be derived by iteratingtransformation pairs [43, 45]. The equivalent of (45) for multiple spectrummodi�cations can be written as a compact formula involving a determinantcontaining integrals of physical and unphysical solutions satisfying (1) [43, 45],V2m(r) = V0(r)� 2 d2dr2 ln det��i�ij + Z 1r '0(ki; t)'0(kj ; t)dt� ; (47)where the ki correspond to m di�erent factorization energies Ei = k2i . Asimilar formula is available for a generalization of (46) with equations (20)and (21) of [45]. These transformations are, in principle, capable of generatingarbitrary modi�cations of the energy spectrum while keeping the scatteringphases unchanged. The determinant form also suggests that the �nal result isindependent of the sequence of the individual transformation pairs, because20



exchanging two of them merely corresponds to exchanging two columns of thedeterminants.Before closing this subsection, we brie
y mention some generalizations ofthe methods based on supersymmetry and factorization. First we note thatthe isospectrality of Hamiltonians can be generated by surprisingly simpleconstructions that do not even refer to the explicit realization of the operatorsinvolved. The intertwining relation [47, 48] between Hamiltonians H1 and H2H1Q = QH2 (48)guarantees, for example, that if there exists an eigenstate  2 of H2 with eigen-value E(2), then Q 2 will be an eigenstate of H1 with the same eigenvalue.(Note that if Q has an inverse, then the above relation can be interpreted as asimilarity transformation between H1 and H2.) However, based only on (48)nothing more can be said about the energy spectra in general. A particularrealization of (48) can be obtained by assuming that the two Hamiltonians arefactorized as H1 = QR ; H2 = RQ : (49)With the additional requirement Q = Ry the Hermiticity of the Hamiltoniansand the non-negativity of their eigenvalues can also be guaranteed.It is remarkable that these rather general results of the factorization method[33, 32] hold in their abstract form, without specifying the realization of the op-erators. In most cases the Schr�odinger equation is factorized in one dimension,i.e. on the x = (�1;1) or the [0;1) intervals (in case of radial equations) oron a �nite interval. Then the Q and R operators are naturally chosen as lineardi�erential operators. Combining operators of the type Q and R with matricesgives rise to various SUSYQM constructions, as we have seen previously in thepresent subsection.The construction leading to isospectral Hamiltonians can be generalizedin several ways. One possibility is considering di�erential operators of higherorder in the realization of the Q and R-type operators [49, 48]. Another possi-bility is using larger matrixes, as in parasupersymmetric quantum mechanics[50], which replaces the fermionic degrees of freedom with parafermionic ones.This latter theory has also been connected with quantum algebras, and somesolvable potentials have been discussed in this context [51].2.3 Lie-algebraic methodsPhysical problems can often be formulated in terms of some algebraic frame-work, and this largely facilitates their discussion, because a number of results21



can be directly interpreted in terms of the powerful machinery of group theory.In this case the ladder and weight operators typically appear as the elementsof various algebras, while the Hamiltonian is constructed from the same op-erators: it can be related to the Casimir operator of the same algebra, or itcan be an element of the algebra. The basis states (generally bound states)are assigned to group representations. In some cases the states assigned tothe same irreducible representation are bound levels belonging to the sameproblem either with di�erent energies or degenerate in energy. In these caseswe talk about spectrum generating algebras and degeneracy algebras, respec-tively [1, 2]. In the latter case the Hamiltonian commutes with the elementsof the algebra. When all the states of a problem are interconnected by theelements of some algebra, it takes the name of dynamical algebra. Examplesfor this are so(4,2) for the Coulomb potential [1] and mp(6) for the isotropicthree-dimensional harmonic oscillator [52]: the latter is the algebra of themetaplectic group, Mp(6), which is the covering group of the symplectic groupSp(6,R), containing the states with even number of oscillator quanta in one ir-reducible representation and the states with odd number of quanta in anotherone.In most applications to quantum mechanical potentials the algebras con-sidered were the somewhat trivial su(1,1)�so(2,1) [1, 53, 54, 55, 56, 57, 58, 59,60, 61, 62, 12, 63, 64] [Jz; J�] = �J� (50)[J+; J�] = �2 Jz ; (51)or its compact version, su(2)�so(3), which can be obtained by the J� ! iJ�transformation. The reason certainly is that the one-dimensional quantummechanical potential problems are usually too \simple" to accommodate largealgebraic structures as degeneracy or dynamical algebras, because they typ-ically support non-degenerate bound states, except for radial problems, likethe harmonic oscillator mentioned before, where degenerate states exist withdi�erent values of the orbital angular momentum l. However, there are onlytwo potentials (the harmonic oscillator and the Coulomb potentials) for whichexact solutions are known for any value of l, so for the remaining potentialsthe degeneracy and dynamical algebras cannot be formulated in general.Nevertheless, there are ways to implement less trivial algebras for potentialproblems too (as so(2,2) [65, 66] or so(4) [65, 67]). One possibility is consideringdi�erent systems connected by the elements of some algebra. This is the casewith the potential algebra [61, 68]. This is somewhat similar to the degeneracyalgebra in the sense that the elements of the algebra connect degenerate levels22



which, however, belong to di�erent Hamiltonians. Not surprisingly, the prob-lems discussed in terms of the potential algebra context are essentially the sameones that can be approached using the factorization method and SUSYQM.The number of exactly solvable problems admitting a potential algebra is lim-ited to some well-known (shape-invariant [18]) problems like the P�oschl{Tellerand Morse potentials, for example. The ladder operators of the su(1,1) po-tential algebras related to these �rst examples can be recognized as the shiftoperators of type A and B problems in the factorization method [32, 34] andalso as the operators A and Ay related to these problems in SUSYQM. TypeA and B problems are displayed in table 1 as PI and LIII class potentials[10] related to the Jacobi and generalized Laguerre polynomials, respectively.The practical equivalence of the su(1,1) potential algebra (and its compactversion, su(2)) with the SUSYQM approach to shape-invariant potentials hasbeen discussed in [69], and later on in [70, 71].A further interesting aspect of potential algebras is that whenever they arenon-compact, scattering states can be treated on an equal footing with boundstates: the former belong to the continuous unitary irreducible representationsand the latter to the discrete unitary irreducible representations of the relevantalgebras. Non-compact potential algebras are so(2,1)�su(1,1) assigned to theMorse and the P�oschl{Teller potentials [61], but later on the larger so(2,2) po-tential algebra was also introduced [72, 73]. In fact, so(2,2) has been identi�edas the algebra of the rather general Natanzon family [8] of solvable potentials[72, 73]. In relation with Natanzon potentials, the concept of the satellite al-gebra has also been proposed [74]. This is an so(2,1) algebra which connectsthe states of di�erent Natanzon potentials, but the energies of these states arenot degenerate, in contrast with potential algebras.To summarize the results and to establish the notation, here we discuss ageneral di�erential realization of the su(1,1) algebra (including also su(2)), inwhich the Hamiltonian is related to the Casimir invariantC2 = �J+J� + J2z � Jz (52)= �J�J+ + J2z + Jz ; (53)which in this realization takes the form of a second-order di�erential operator.The eigenstates of C2 and Jz (with eigenvalues j(j + 1) and m, respectively)serve as a basis for the irreducible representations of the SU(1,1) group, and canbe labelled by jjmi. In contrast with the unitary irreducible representationsof the compact SU(2) group, which are �nite-dimensional, those of SU(1,1)are in�nite-dimensional and come in several types. First, there are discreteunitary ireducible representation called the discrete principal series D+j , for23



which j = �12 � p2 ; (p = 0; 1; ::: ) (54)m = �j; �j + 1; �j + 2; ::: (55)hold. Another discrete series is D�j , with opposite signs for j and m. Thenthere are the continuous principal series withj = �12 + ik ; (0 < k) (56)m = 0� 1; �2; ::: or m = �12 ; �32 ; ::: (57)In the potential group approach these discrete and continuous unitary irre-ducible representations were associated with the bound- and scattering-statesolutions of the P�oschl{Teller and Morse potentials, for example [61]. Finally,there are the so-called supplementary series, for which�12 < j < 0; m = 0� 1; �2; ::: (58)holds, but which did not play any role in the formulation of the potential groupapproach [61]. The representation labels discussed here ultimately appear inthe coupling coe�cients and the energy formula of the physical problem. In thisrespect it has to be noted that they are not necessarily restricted to integeror half-integer values (as in some of the formulae above): using projectiverepresentations [75] arbitrary real values are allowed for them.Following Sukumar [60], we consider the realization of su(1,1) in terms ofthe �rst-order di�erential operatorsJ� = e�i�  �h(x) @@x � g(x) + f(x)Jz + c(x)! (59)and Jz = �i @@� ; (60)together with the following form of the basis statesjjmi = 	jm(x) = eim� jm(x) : (61)Here x is a spatial coordinate variable while � is an auxiliary phase factor. Itwas shown that (51) is ful�lled, provided that the relationsf 2(x)� h(x)dfdx = 1 (62)24



and h(x) dcdx � c(x)f(x) = 0 (63)hold. (Equation (50) is automatically satis�ed by this construction.) In termsof this realization the Casimir operator has the formC2 = h2(x) d2dx + h(x) dhdx + 2g(x)� f(x)! ddx�  f(x)g(x)� g2(x)� h(x)dgdx + c2(x)!� 2c(x)f(x)Jz + (1� f 2(x))J2z :(64)An important observation is that the su(1,1) algebra remains intact undervariable and similarity transformations de�ned by x ! z(x) and 	jm(x) !1v(x)	jm(x), respectively. The only essential changes occur for h(x) and g(x)in the two cases: h(x)! h(x(z))dzdx (65)g(x)! g(x) + h(x) ddx ln v(x) : (66)It has to be noted that su(1,1) remains unchanged provided the the functionsgoverning transformations (i.e. z(x) and v(x)) do not depend explicitly on m,the eigenvalue of generator Jz. Obviously, these transformations are nothingbut the algebraic version of the method discussed previously in subsection2.1, and (64) can be chosen to be the Schr�odinger equation or the second-order di�erential equation of some special function. To this end only the fourfunctions appearing in (59) have to be chosen in an appropriate way. In fact,in order to obtain the Schr�odinger equation, one further condition has to beimposed on these functions in addition to (59) and (60):dhdx + 2g(x)� f(x) = 0 : (67)It can also be noted that the mathematical construction presented here can beused to recover potentials associated with the compact su(2) algebra as well.This requires only the rede�nition of the functions h(x), f(x), g(x) and c(x) bymultiplying them with the constant imaginary factor i (or �i). This operationchanges the sign of the right-hand side of (62), but does not a�ect (63). Theexpression for the Casimir operator in (65) also remains valid in its present25



form: the h(x)! ih(x), ..., etc. transformation simply changes the sign of itsterms except for the one J2z .In [69] this algebraic transformation method was applied systematicallyto the di�erential equations of orthogonal polynomials to recover su(1,1) andsu(2) algebras associated with the shape-invariant potentials. The algebrasturned out to be potential or spectrum generating algebras. Furthermore,it was found that in some cases the generators form a compact su(2) algebrarather than a non-compact su(1,1) algebra considered originally. This is relatedto the nature of the individual potentials (i.e. whether the number of theirbound states is in�nite or not, or whether they have scattering states, etc.).Potential algebras have been recovered for two classes of shape{invariantpotentials: the LIII class (i.e. the Morse potential) and the PI class which con-tains �ve individual potentials (see table 1). A characteristic feature of thesepotentials is that the h(x) function in (59) is a constant, and the di�erentialform of Casimir operator (64) is proportional to the Schr�odinger equation upto a constant. For the same reason the J+ and J� generators of these poten-tial algebras are practically identical with the Ay and A ladder operators ofSUSYQM in the sense that they have the same e�ect on them [69]. This wascon�rmed later also in [70, 71]. These potentials belonging to the PI and LIIIshape-invariant class correspond to type A and B potentials in the factoriza-tion method [32] and a study based on the Lie theory of special functions [34].See also [10] for the details.Spectrum generating algebras have been recovered for the LI, HI classes(i.e. the harmonic oscillators in three and one dimensions) and for special(symmetric) cases of PI and PII potentials. A common feature of these alge-bras is that in contrast with the case of potential algebras, now the variabletransformation results an h(x) function which is di�erent from a constant,and, consequently the Hamiltonian has more complicated structure and doesnot necessarily commute with the generators. Due to the same circumstances(i.e. h(x) 6= const) the SUSYQM ladder operators di�er from J+ and J� inthis case. The Coulomb problem in three dimensions, i.e. the LII (or type F[32, 34]) class turned out to be inaccessible with this method. This is becausethe variable transformation z(x) depends explicitly on the n and l quantumnumbers (or the m eigenvalue of the Jz generator), and this prevents the useof the present di�erential realization of the su(1,1) algebra in this case.Some of the algebras recovered in [69] can be embedded into some largeralgebras. This is the case with the Scarf II, the generalized P�oschl{Teller,the Morse potential [63] and the three{dimensional harmonic oscillator [1], forexample. It was also shown [72, 73] that the Natanzon class potentials can be26



associated with an so(2,2) algebra. It also has to be noted that the di�erentialrealization (59), (60) of the su(1,1) algebra is only one possibility, and there areothers in which the parametrization is done without auxiliary phase variables[53, 1, 56, 62, 64].2.4 PT symmetry of potentialsThe most recent symmetry concept discussed here requires the invariance ofthe Hamiltonian under the PT operation, i.e. the simultaneous action of the Pspatial and the T time re
ection operations (the latter essentially being com-plex conjugation). For one-dimensional potentials of nonrelativistic quantummechanics this invariance requires (V (�x))� = V (x). Therefore PT invariantpotentials are typically complex, and their real component is even, while theirimaginary component is odd function of x. Although this symmetry conceptrequires only the commutation of a single operator with the Hamiltonian, i.e.PT H(PT )�1 = PT HPT = H ; (68)so mathematically it seems less sophisticated than supersymmetric and Lie-algebraic symmetry concepts, it has surprisingly far reaching consequancesregarding the energy spectrum of the potential. In particular, it was found thatdespite being complex (i.e. non-Hermitian), these potentials often have realenergy eigenvalues, and this unusual feature was associated with the invarianceof the Hamiltonian under the PT operation.In the majority of quantum mechanical problems the Hamiltonian of thesystem is Hermitian, and this requirement guarantees that the bound-stateenergy eigenvalues are real. In some cases, however, the physical situationis such that the application of non-Hermitian Hamiltonians is justi�ed. Thishappens, for example, for complex potentials used mainly in nuclear physicsand accounting for the absorption of incident particles. In these models thediscrete energy eigenvalues become complex in general. This is clearly di�erentfrom the properties of PT invariant potentials. One important di�erence withrespect to the complex optical potentials applied in nuclear physics, for exam-ple, is that these potentials are radial ones (see [76]), while the PT symmetricpotentials are de�ned on the full x axis or on a �nite domain of it, but theyare also often de�ned on various contours of the complex x plane.Strangely enough, the �rst examples for complex potentials with real spec-tra were found using numerical techniques [5]. The potentials considered in the�rst studies were typically polynomial type potentials with imaginary couplingcoe�cients [5]. These problems were de�ned on the complex x plane, and it27



was found that normalizable solutions can be found along trajectories falling incertain wedges of the plane. Similar problems have been identi�ed (sometimesin retrospect) from methods based on Fourier transformation analyses [77],semiclassical estimates, [78], numerical calculations [79], Sturm-Liouville-liketheory [80], variational techniques [81] or perturbation methods [82].Obviously, exactly solvable examples can be rather useful in the more thor-ough understanding of PT symmetric quantum mechanics, so exact analyticalsolutions to such problems have soon been derived [83, 84, 85, 86, 87, 88, 89, 90,91, 92]. Most of the exactly solvable PT symmetric potentials have analoguesin usual quantum mechanics. In some cases PT invariance is reached by simplysetting the coupling constants of the odd potential terms to imaginary values.This was easy with potentials de�ned originally as one-dimensional problemson the full x axis [83, 84, 85]. In some other cases the coordinate x is shiftedwith an imaginary constant to x� i�. One important aspect of this imaginarycoordinate shift was that it cancelled the singularities typically appearing insome potentials at x = 0 (like the centrifugal barrier), and then these origi-nally radial problems could be naturally extended to the full x axis [77, 86, 87].For another class of potentials asymptotically deformed integration paths arede�ned to secure normalizability of the solutions [88, 89, 90, 91, 92]. It isnot surprising that these exotic complex potentials had some unusual features.The cancellation of singularities encountered in the Hermitian versions of thesepotentials, for example, led to less strict boundary conditions, and thus to aricher energy spectrum.It was also noticed that PT symmetry is neither a necessary, nor a su�-cient condition for having real energy spectrum in a complex potential. It is nota necessary condition, because there are complex non-PT symmetric poten-tials with these properties [83, 90] some of these are complex supersymmetricpartners of real potentials. Neither is PT symmetry a su�cient condition,because complex-energy solutions of such potentials are also known, and sincein this case the energy eigenfunctions cease to be eigenfunctions of the PToperator, this scenario has been interpreted as the spontaneous breakdown ofPT symmetry [5]. No general condition has been found for the breakdown ofPT symmetry, but it has been observed that it usually characterizes stronglynon-Hermitian problems [5, 93, 94].The lack of Hermiticity raised questions about the probabilistic interpre-tation of the wavefunctions (probability density, continuity equation), and ingeneral, about the de�nition of the norm and the inner product of the eigen-vectors of the non-Hermitian Hamiltonian. It has been suggested, for exam-ple, that the  2(x) quantity should replace j (x)j2 in the de�nition of the28



norm [81]. For unbroken PT symmetry this expression coincides with the (x) �(�x) quantity used in the de�nition of the pseudo-norm [95], which isobtained from the modi�ed inner product h ijPj ji. This rede�nition of theinner product was found to lead to the orthogonality of the energy eigenstates,but it also resulted in an inde�nite metric, replacing the usual Hilbert spacewith the Krein space [96]. E�orts have been made to restore the Hermitianformalism using projection techniques [95, 96].More recently PT symmetric quantum mechanics was put into a moregeneral context, as the special case of pseudo-Hermiticity [97]. A Hamiltonianis said to be �-pseudo-Hermitian ifHy = �H��1 (69)holds, where y denotes the adjoint operation. (Sometimes pseudo-Hermiticityis de�ned by the intertwining relation Hy� = �H, because this doesn't requirethe invertibility of the � operator.) Obviously, � = 1 recovers conventionalHermiticity, while PT symmetric Hamiltonians are P-psudo-Hermitian. Itwas also shown, that for �-pseudo-Hermitian systems the inner product has tobe rede�ned as h 1j 2i� � h 1j�j 2i ; (70)which recovers the conventional inner product for � = 1 and the one discussedpreviously for � = P. Based on these general arguments it was demonstrated[97] that a Hamiltonian is pseudo-Hermitian if and only if its eigenvalues arereal or come in complex conjugate pairs, as was the observation for PT sym-metric potentials. With these general considerations an explanation was givenfor the existence of those non-Hermitian problems which have real spectra,but do not possess PT invariance. In fact, the term psudo-Hermiticity has al-ready been introduced long before the formulation of PT symmetric quantummechanics [98, 99].Since the evolution of PT symmetric quantum mechanics is not yet �n-ished, some recent results will be presented in subsection 3.4, in relation withmy activity in the �eld.
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3 ResultsThe relatively simple shape-invariant potentials have already been analyzedthoroughly in terms of supersymmetric quantum mechanics and algebraic ap-proaches, so my results in subsections 3.1, 3.2 and 3.3 concern mainly moregeneral potentials, or sometimes the non-standard treatment of shape-invariantpotentials. PT symmetry is a more recent subject, so there was more room forillustrating the methods with the simple shape-invariant potentials. For thisreason most of the examples I present in subsection 3.4 are related to shape-invariant potentials. This also holds for the examples presented in subsection3.5, where I analyze the relation of the three symmetry concepts.3.1 Some non-trivial solvable potentialsIn this subsection I present illustrative examples for Natanzon and Natanzoncon
uent potentials introduced by various methods. Some of these are \im-plicit" potentials, i.e. the z(x) function de�ning the variable transformationin terms of the method discussed in subsection 2.1 is given in the implicit x(z)form only, while in some other cases the z(x) function is known explicitly, butthe energy eigenvalues have to be calculated from the roots of a cubic equa-tion. Besides potentials introduced by me, I also discuss some others which Ianalyze in the forthcoming subsections.3.1.1 An \implicit" type Natanzon con
uent potential: the gener-alized Coulomb problemThe generalized Coulomb potential was introduced previously [16] as a radialpotential in three spatial dimensions, while here I discuss it in arbitrary dimen-sions and analyze some of its speci�c properties. This potential contains boththe Coulomb and the harmonic oscillator potentials (of various dimensions)as special (shape-invariant) limits, and establishes a novel type of Coulomb-oscillator connection. This follows from the substitution of the generalizedLaguerre polynomials L(�)n (z) into (6) as the F (z) special function, i.e. writingQ(z) = �1 + (� + 1)=z and R(z) = n=z [19]:E � V (x) = z000(x)2z0(x) � 34  z00(x)z0(x)!2 + (z0(x))2z(x) �n+ � + 12 �� (z0(x))24�(z0(x))2z2(x)  �2 � 14 ! : (71)30



If we identify the third, fourth and �fth term on the right-hand side withthe (energy) constant, then we arrive at di�erential equations de�ning theharmonic oscillator (LI), Coulomb (LII) and Morse (LIII) potentials [10, 16].(See table 1.) The generalized Coulomb potential is obtained if the linearcombination of the third and the fourth term is identi�ed with a constant.Introducing for convenience the z(r) = �h(r) notation, the di�erential equationde�ning this potential is (h0)2 = Ch(h+�)�1, which is solved implicitly by [16]r = r(h) = C� 12 24� tanh�10@ hh+ �!121A+ (h(h+ �)) 1235 : (72)The h(r) function maps the [0;1) half axis onto itself and can be approximatedwith h(r) ' C 12 r and h(r) ' Cr2=(4�) in the r ! 1 and r ! 0 limits,respectively.Adapting the notation to D spatial dimensions, the generalized Coulombpotential is [P5]V (r) = � 1r2 �l + D � 32 ��l + D � 12 �+ �� � 12��� � 32� C4h(r)(h(r) + �)� qh(r) + � � 3C16(h(r) + �)2 + 5C�16(h(r) + �)3 ; (73)where the �rst term compensates the centrifugal term in the Schr�odinger equa-tion (with units of �h = 2m = 1)H0 (r) �  � d2dr2 + 1r2 (l + D � 32 )(l + D � 12 ) + V (r)! (r) = E (r) : (74)The centrifugal term originates from the kinetic term, i.e. from theD-dimensionalLaplace operator after separating the angular variables. The bound-state wave-functions solving (74) are normalized asZ 10 j (r)j2dr = 1 : (75)Bound states are located [P5] atEn = �C4 �2n ; (76)where �n = 2� 0@ (n + �=2)2 + q�C ! 12 � (n + �=2)1A : (77)31



The bound-state wavefunctions can be written in terms of generalized Laguerrepolynomials as n(r) = C 14��+12n  �(n+ 1)�(n+ �)(2n+ � + �n�)!1=2�(h(r) + �) 14 (h(r)) 2��14 exp(��n2 h(r))L(��1)n (�nh(r)) : (78)Potential (73) clearly carries angular momentum dependence: its �rst termmerely compensates the centrifugal term arising from the kinetic term of theHamiltonian. Its second term also has r�2-like singularity (due to h�1(r)),and as it will be demonstrated later, it cancels the angular momentum depen-dent term in the two important limiting cases that recover the D-dimensionalCoulomb and the harmonic oscillator potentials. The third term of (73) rep-resents an asymptotically Coulomb-like interaction, while the remaining twoterms behave like r�2 and r�3 for large values of r.These general results can readily be specialized to D = 3 and l = 0, i.e. for theusual Coulomb potential. The S matrix of the generalized Coulomb potentialcan be derived in complete analogy with that of the Coulomb problem forD = 3. Although this can only be done exactly for l = 0, the singular termimitating the centrifugal term in (73) can be de�ned to be part of the potential.Following the method of [101], the S matrix for l = 0 is expressed as [P5]S0(k) = (�1)�2+1�(�2 + i�)�(�2 � i�) ; (79)where i� � i�(k) = ��4 � qC� ; � � �(k) = � 2ikC1=2 : (80)The extra phase factor in S0(k) appears because of the r�2-type singular term,which is now de�ned to be part of the potential. In the Coulomb limit thisexpression becomes part of the centrifugal term, which is dealt with separately.The long-range behavior of potential (73) suggests its use in problems asso-ciated with the electrostatic �eld of some charge distribution. The deviationfrom the Coulomb potential close to the origin can be viewed as replacingthe point-like charge with an extended charged object. The relevant chargedensity is readily obtained [P5] from the potential using�(r) = � 14�e�v(r) : (81)32
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uent potential byconstruction, and it contains the Coulomb and the harmonic oscillator poten-tials as special cases. This is also re
ected by the structure of the functionh(r) in (72): when h(r) is proportional to r and r2, one obtains the Coulombproblem and the harmonic oscillator potential, respectively. These limits canreadily be realized by speci�c choices of the parameters in (72): the �rst onefollows from the � ! 0 limit [16], while the second one is reached by taking� !1, while keeping C=� � ~C constant [100, P5].Besides taking the � ! 0 limit, the Coulomb problem in D-dimensions isrecovered from (73) by the � = 2l + D � 1 and C� 12 q = Ze2, choices: thethird term of (73) becomes the Coulomb term, the �fth one vanishes, whilethe other three all become proportional with r�2 and cancel out completely.In order to reach the oscillator [P5] limit one also has to rede�ne the po-tential (73) and the energy eigenvalues by adding q=� to both. This choice33



simply represents resetting the energy scale: E = 0 corresponds to V (r!1)for the Coulomb problem, and to V (r = 0) for the harmonic oscillator. (Notethat the energy eigenvalues also have di�erent signs in the two cases.) BesidesC=� = ~C, the ~q � q=�2 parameter also has to remain constant in the � ! 1transition here. The potential thus adapted to the harmonic oscillator limitreads~V (r) � V (r) + q� =� 1r2 �l + D � 32 ��l + D � 12 �+ �� � 12��� � 32� ~C4h(r)(1 + h(r)� )� ~qh(r)1 + h(r)� � 3 ~C16� 1�1 + h(r)� �2 + 5 ~C16� 1�1 + h(r)� �3 : (82)The harmonic oscillator potential is recovered from (82) by the � = l + D=2and ~C~q = !2 choice. The two last terms in (82) vanish, the �rst and the secondcancel out, while the third one reproduces the harmonic oscillator potential.The new form of the energy eigenvalues is~En � En + q=� = ~C(2n+ �) 24 1�2 (n+ �2 )2 + ~q~C! 12 � 1� (n+ �2 )35 ; (83)which indeed, reduces to the ~En = (2n + l + D=2)! oscillator spectrum inthe � ! 1 limit. The wavefunctions (78) are unchanged, except for therede�nition of the parameters.Note that the generalized Coulomb problem establishes a link between theCoulomb problem and the harmonic oscillator potential in di�erent spatialdimensions. This is best seen by inspecting the wavefunctions (78). If the� � 1 parameter of the generalized Laguerre polynomial is required to bethe same in the two limits, we get an interrelation between the value of theangular momentum and the spatial dimension to be used for the Coulomb andthe harmonic oscillator case:lO + DO2 = 2lC +DC � 1 : (84)Considering lO = 2lC , (84) implies DO = 2DC � 2 which establishes linkbetween the (DC ; DO) =(2,2), (3,4), (4,6), (5,8), : : : etc. pairs. (Of thesethe (3,4) pair corresponds to the Kustaanheimo-Steifel transformation [102].)This case is called the \direct map" between the Coulombic and oscillator34



solutions in [103], while with the lO = 2lC + � choice the \general map" canbe recovered. These results suggest that the generalized Coulomb potentialcan be used to formulate a continuous transition between the Coulomb andharmonic oscillator potentials, as opposed to the usual procedure that employsa unique variable and parameter transformation to reach this goal.The formalism developed previously is valid for D = 1 too, nevertheless,some particular properties of one-dimensional problems justify a separate treat-ment of this case [P5]. First, the implicit de�nition of the h(r) function in (72)has to be extended to negative values of r, which we now denote with x. Usingthe notation of (72), we can write that x = r(h) for x � 0 and x = �r(h) forx < 0. The normalization of the wavefunctions in (78) also has to be modi�edwith a factor of 2�1=2, accounting for the fact that the integration now runsfrom �1 to 1.For one-dimensional problems it is natural to set l to 0 besides D = 1,which eliminates the centrifugal term in (73). Furthermore, in order to avoidr�2-like singularities at x = 0 the second term in (73) also has to be canceled bysetting � either to 1=2 or to 3=2. Elementary calculations show that the latterchoice corresponds to bound-state wavefunctions that vanish at x = 0, andessentially represent physical solutions of the problem in higher dimensions aswell, while the former choice recovers solutions that do not vanish in generalat x = 0. These two possibilities can naturally be interpreted as odd and evensolutions of the one-dimensional potential problem. Furthermore, for x � 0the two types of wavefunctions can be rewritten into a common notation (upto a sign) by making use of the relation of generalized Laguerre and Hermitepolynomials, when the former ones have � = 1=2 or � = �1=2 as parameters[19]:  (D=1)N (x) = C 14 ~� 34N2N ��(N+12 )�(N2 + 1)(N + 12 + �~�N� 12�(h(x) + �) 14 exp(� ~�N2 h(x))HN((~�Nh(x)) 12 ) : (85)For x � 0 the bound-state wavefunctions satisfy (D=1)N (�x) = (  (D=1)N (x) for N = 2n (� = 12)� (D=1)N (x) for N = 2n+ 1 (� = 32) : (86)
35



In (85) we de�ned ~�N as~�N � 1� 24 (N + 12)2 + 4q�C !12 � (N + 12)35 ; (87)which reduces to �[N2 ], where even and odd values of N have to be chosen with� = 1=2 and � = 3=2, respectively, and the integer part of N=2 corresponds ton used in �n in (77).An interesting aspect of this potential is that it remains �nite at x = 0(V (0) = �q=� + C=(8�2)) for any �nite value of �, however, a narrow, �nitepeak appears in the � ! 0 limit, which then becomes an attractive�3=(16r�2)-like singularity in the Coulomb limit. This is due to the fourth term in (73) andit corresponds to a \weak" singularity in the sense that the center of attractionis not strong enough for the particle to become in�nitely bound [104]. This�nite barrier arising for small, but �nite � values also introduces the possibilityof studying tunneling e�ects in symmetric potential wells. We also note thatbesides being �nite at x = 0, potential (73) has continuous derivative there,as can directly be veri�ed.Based on these features the D = 1 version of potential (73) can be used toanalyze the peculiarities of the one-dimensional Coulomb potential de�ned asV c = �e2=jxj. This problem has been the subject of intensive studies in thepast couple of decades, but there is still some controversy in the interpreta-tion of the results (see e.g. [105] for a recent review). The unusual featuresattributed to this singular problem include degenerate eigenvalues [106] inter-preted in terms of a hidden O(2) symmetry [107], an in�nitely bound groundstate [106] and continuous bound-state spectrum [108]. The last two of thesewere later found to be based on unacceptable solutions of the Schr�odingerequation [109, 110], while the unexpected degeneracy was explained by an im-penetrable barrier at x = 0, which separates the problem into two disjoint,non-communicating systems with identical energy spectra [110] and makeseven the concept of parity obsolete here [111]. Most authors discussing theone-dimensional Coulomb problem agree that the usual techniques of quan-tum mechanics alone in dealing with potentials are not su�cient in this case.In [112] for example self-adjoint extension of the relevant di�erential operatorhas been discussed.The one-dimensional version of potential (73) can be chosen in such a waythat it becomes close to non-singular potentials used in the approximation ofthe true one-dimensional Coulomb potential. In fact, with appropriate choiceof q and � any desired Coulomb asymptotics and V (x = 0) value can be gen-erated. Figure 2 shows potentials with rounded-o� shape near x = 0 (� = 1,36



q = 0:5) and also ones close to the Coulomb potential with a cuto��e2=(jxj+a)(� = 1, q = 2:5). In contrast with these modi�ed Coulomb potentials, all calcu-lations can be performed exactly with (73). In the � ! 0 limit the generalizedCoulomb potential recovers the one-dimensional Coulomb potential supple-mented with the � 316x�2 term. This means that the one-dimensional Coulombpotential cannot be reached exactly, nevertheless, reasonable approximationsof it can be given.The odd solutions, of course, vanish at x = 0, while the even solutionshave non-zero value there as long as � > 0 holds. In the � ! 0 limit  (D=1)N=2n (0)varies with �1=4, so the even solutions also tend to zero at x = 0. This isin accordance with the behaviour of \weakly attractive" 
r�2 type singularpotentials on the half line: for �14 < 
 < 0 both independent solutions vanishat the origin, so the wavefunctions are necessarily zero at r = 0. If we try toextend the N = 2n solutions (85) in the � = 0 Coulomb limit to the (�1; 0)domain we �nd that due to their x1=4 type behavior at the origin the derivativeof an even wavefunction would not be continuous anymore.The re
exion and transmission coe�cients can be analyzed using the asymp-totic behavior of the general solutions of the one-dimensional problem. Thesecan be chosen to be even and odd functions of x. The even and the odd so-lutions can be de�ned for x � 0, setting � = 12 and 32 , respectively; and theirextension to x � 0 can be given using a formula similar to (86). The two solu-tions are interrelated by equation 6.3(3) of [114]. Due to the symmetric natureof the one-dimensional potential (V (x) = V (�x)) it is enough to analyze theasymptotic behavior of the solutions for x ! 1: the x ! �1 case followsnaturally. Straightforward calculations show that the re
exion coe�cient isR(k) = e�i�=42  �(14 + i�)�(14 � i�) � i�(34 + i�)�(34 � i�)! : (88)Strong re
exion is found for potentials having a (�nite) barrier in x = 0 (likethose in �gure 2 with � = 0:01), while more regular shapes (like that in �gure 2with � = 1 and q = 2:5, for example) give weak re
exion. Our �ndings seem tosupport the existence of the space splitting e�ect [111] valid for the Coulombpotential on one dimension [P5].Besides its mathematical aspects the one-dimensional Coulomb potential hasphysical relevance too, in the description of the hydrogen atom in strong mag-netic �eld [115], for example. In such practical calculations it is reasonable touse a non-singular Coulomb-like potential instead of the true one-dimensionalCoulomb potential: the �nite size of the nucleus can be a justi�cation for this.37



This means that the one-dimensional Coulomb potential might not be su�-cient in such calculations: the basis de�ned with it simply does not containeven-parity states. In practical calculations therefore the use of bases like thatassigned to the generalized Coulomb potential is necessary.3.1.2 Some \implicit" type Natanzon potentialsHere I mention some speci�c features of Natanzon potentials constructed byme, and also describe brie
y some known ones which I am using in subsections3.2 and 3.3. Natanzon potentials can conveniently be generated in terms of thetransformation method discussed in subsection 2.1 by identifying F (z) with aJacobi polynomial: F (z) = P (�;�)n (z). Equation (7) is an explicit form forE � V (x) in this case:E � V (x) = z000(x)2z0(x) � 34  z00(x)z0(x) !2 + (z0(x))21� z2(x)n(n+ � + � + 1)+ (z0(x))2(1� z2(x))2 �12(� + � + 2)� 14(� � �)2�+(z0(x))2z(x)(1� z2(x))2 12(� � �)(� + �)+(z0(x))2z2(x)(1� z2(x))2 2414 �  � + � + 12 !235 : (89)As discussed in [10], one selects di�erential equations of the type (9) for z(x)to get constant terms on the right-hand side of (89). In [10] the �rst two non-trivial terms were picked, leading to the PI and PII potential classes. The de�n-ing di�erential equation of these is (z0)2(1�z2)�1 = C and (z0)2(1�z2)�2 = C.Later in [15] the third \PIII" possibility, z(z0)2(1 � z2)�2 = C was also dis-cussed, resulting in an \implicit potential" with no shape-invariant limit. Fur-ther choices of the de�ning (9) di�erential equation yields further Natanzonpotentials, and we are going to analyze some of them here. Obviously, therecan be only three linearly independent terms of the type (z0)2z�(1� z2)2 (89),with � =0, 1 and 2 as the most convenient choice, so the last term in (89) isredundant. However, for convenience and later use we keep it.Considering the di�erential equation [P1](z0)2z(1� z2)(1� z) = C (90)38



obviously corresponds to taking a special linear combination of the third andfourth term in (89). For C = �1 (90) is solved by the implicitx(z) = 2 tan�1[(�z�1 � 1)1=2 � 21=2 tan�1 h[(�z�1 � 1)=2]1=2i (91)function, which maps z 2 [�1; 0] to the �nite x 2 [0; �(1 � 2�1=2)] domain.The resulting potentialV (x(z)) = �Bz � 4z4 + 4z3 � z2 � 2z � 516z3(1 + z) (92)is then also de�ned on a �nite range, similarly to the trigonometric shape-invariant potentials. The energy eigenvalues are En = �2n=2�B, where B and�n are de�ned by B = �2n2 � �n+ �n2 ��n+ �n2 + 1� (93)and the bound-state wavefunctions are n(x(z)) � z1=4(1 + z)1=4(1� z)�n=2P (�n;0)n (z) : (94)Equation (93) requires B � �1=4.A close inspection of the behaviour of this potential near the endpointsreveals that it is singular and attractive, but the �
=x2-type singularities donot belong to the prohibitive 
 > 1=4 domain, where the particle falls into thecenter of attraction [104]. A particularly interesting case arises for B = 1=4,when the square root in (93) disappears and the energy eigenvalues becomeidentical with those of the potential V (x) = c2s(s� 1)cosec 2(cx) � 1=4 withs = 1=2 and C = 2 + 21=2. This is a downward oriented symmetric Scarf I orP�oschl{Teller I potential (see table 1), which is attractive, but its singularity isin the \weakly attractive" domain (
 = 5=36), so its solutions are still physical[116]. Therefore it can either be considered an elementary cell of a periodicpotential or a single �nite-range potential, similarly to the trigonometric shape-invariant potentials.Finally, we note that potential (92) can be obtained from the general Natan-zon potentials (11) by taking a1 = �4, c1 = 0, c0 = �2, f = �1, h0 = 2B�3=2and h1 = 1 [P1].As another illutrative example we can choose the de�ning di�erential equa-tion [P18] (z0)2(z + 
)2(1� z2)2 = C ; (95)39



which is solved by x(z) = ln h(1 + z) 1+
2 (1� z) 1�
2 i (96)for C = 1, which merely corresponds to setting the length scale to a particularvalue. This is an implicit function mapping z 2 [�1; 1] to x 2 (�1;1), andit resembles the z(x) = tanh x function, except that its shape is set by 
.Rearranging the terms in (89) so that n appears only in the constant termwe �nd that the � and � parameters of the Jacobi polynomials have to berelated by � = �(
 � 1)=(
 + 1) unless 
 = 1 holds. Furthermore, � picks upn-dependence, since it has to ful�l the condition �2 = [n+ 
(�+ n)][(n+ 1 +
(� + n+ 1)]� A(
 + 1)2. Then the resulting potential takes the formV (x(z)) = �A(1� z2)(z + 
)2 � z(1� z2)(z + 
)3 � 3(1� z2)24(z + 
)4 : (97)The energy eigenvalues are En = ��2n=(
 + 1)2 and the corresponding bound-state wavefunctions become n(x(z)) � (z + 
)1=2(1� z)�n=2(1 + z)�n=2P (�n;�n)n (z) ; (98)where�n = h�
(2n + 1) + [4n(n+ 1) + 4A(
2 � 1) + 
2] 12 i [2(
 � 1)]�1 = �n
 + 1
 � 1 :(99)It can also be established that the number of bound states is limited by n <�1=2 + (A+ 1=4)1=2, so it is independent of 
.The potential is essentially single hole shifted with respect to x = 0, itsdepth is set by A, while 
 changes its shape in such a way that making itdeeper goes with making it narrower and vice versa, in accordance with theobservation the 
 does not in
uence the number of states.Finally, we note that potential (97) is a Natanzon potential (11) with a1 =4, c1 = 
2 + 3, c0 = (
 + 1)2, f = �4A, h0 = h1 = 1 [P18]. It also hasto be mentioned that radically di�erent results are obtained for 
 = 1, whichcorresponds to a potential discussed in subsection 3.1.3. This particular choiceof 
 even changes this \implicit" potential into an \explicit" one, because the(95) di�erential equation becomes explicitly solvable for z.In order to recover the Ginocchio potential [13] one can consider (89) with� = �, in which case the Jacobi polynomials reduce to the simpler Gegenbauerpolynomials [19] in (89) only two essential terms remain with (z0)2(1 � z2)�1and (z0)2(1 � z2)�2. These two terms lead to PI and PII type potentials in40



table 1, but only with their restricted (symmetric) version due to the � = �choice. Actually, these PI and PII potentials coincide pairwise and result inthe hyperbolic and trigonometric versions of the P�oschl{Teller potential hole.The Ginocchio potential can be obtained by combining the surviving twoterms by setting [C3] (z0)2 = C(1� z2)2(� + 1� z2)�1 : (100)This contains the above two cases if � = 0 and � ! 1 is chosen (here alsoprescribing C��1 ! eC = finite). Equation (100) is solved, for example, bythe implicit x(z) functionC 12x = tan�1 hz(� + 1� z2)� 12 i + � 12 tanh�1 h� 12 z(� + 1� z2)� 12 i ; (101)which, up to some variable and parameter transformation, is the equationde�ning the Ginocchio potential [13]. E � V (x) in (7) now takes the formE � V (x) = C  (n+ �)2 � 4� + 3� 3�4M(z) � 3�(3� + 2)4M2(z) + 5�2(� + 1)4M3(z) ! ; (102)� � �� + 12���� 32� + � �n + �+ 12��n+ �� 12� ; (103)where we used the notation M(z) � � + 1� z2. Equations (102) and (103) aswell as the wavefunctions n(x) = (� + 1� z2(x)) 14 (1� z2(x)) 12 (�� 12 )C(�)n (z(x)) (104)reduce to the corresponding ones in [13] for � = (�2 � 1)�1, C = �4(�2 � 1)�1and � = � + 12 . We are going to present an su(1,1) algebra related to theGinocchio potential in subsection 3.3.1.Just as the Ginocchio potential [13] contains the symmetric P�oschl{Tellerpotential in a special limit, the generalized Ginocchio potential [14] containsthe generalized P�oschl{Teller potential as a special case. The main di�erencebetween the latter and former potentials is that the latter ones have an r�2type singularity at r = 0 and are interpreted as radial potentials. Since we aregoing to analyze the generalized Ginocchio potential in subsection 3.2.2, wepresent its essential properties here and discuss it as a member of the Natanzonpotential class.In its original formulation of the generalized Ginocchio potential was de-�ned to describe a particle with an e�ective mass [14]. This e�ective (i.e.41



coordinate-dependent) mass is clearly incompatible with the standard Schr�o-dinger equation we consider, therefore here we take a special case allowingconstant mass. In what follows we parametrize the generalized Ginocchio po-tential asV0(r) = � 
4
2 + sinh2 uhs(s+ 1) + 1� 
2 � 5
2(1� 
2)24(
2 + sinh2 u)2� 3(1� 
2)(3
2 � 1)4(
2 + sinh2 u) � �(�� 1) coth2 ui ; (105)where we changed the notation of [14] to make it more suitable for our purposes.This form can be obtained from the original formulae by setting a = 0 (whichcancels the e�ective mass term), �l = � � 12 , �l = s, �nl = �, � = 
 andy = sinh u(
2 + sinh2 u)� 12 .The (generalized) Ginocchio potential is an example for \implicit" poten-tials, because it is expressed in terms of a function u(r) which is known onlyin the implicit r(u) form:r = 1
2 h tanh�1 �(
2 + sinh2 u)� 12 sinh u�+ (
2 � 1) 12 tan�1 �(
2 � 1) 12 (
2 + sinh2 u)� 12 sinh u�i ; (106)which is essentially the same as (101) using the new parametrization. Now rcan take values from the positive half axis, which is mapped by the monotonouslyincreasing implicit u(r) function onto itself. This function is, actually, the so-lution of an ordinary �rst-order di�erential equationdudr = 
2 cosh u(
2 + sinh2 u) 12 (107)de�ning a variable transformation connecting the Schr�odinger equation withthe di�erential equation of the Jacobi (and Gegenbauer) polynomials. Consid-ering the problem as a Natanzon potential, the z = cosh�2 u substitution hasto be made in (11) to (14), and this sets the a1, c1 and c0 parameters in (12)to a1 = (1� 
2)
�4, c1 = 0 and c0 = 
�4. It can be seen from (106) and (107)that u(r) behaves approximately as 
r near the origin, and as 
2r for largevalues of r. In the 
 ! 1 limit u becomes identical with r, and (105) reducesto the generalized P�oschl{Teller potential, which is in line with the fact thatin this limit a1 ! 0.Bound states are located at En = �
4�2n ; (108)42



where n varies from 0 to nmax de�ned below and�n = 1
2 24��2n+ �+ 12�+ ��2n+ �+ 12�2(1� 
2) + 
2�s+ 12�2� 1235 :(109)All the terms in (105) are �nite at the origin, with the exception of the lastone, which shows r�2-like singularity there, and can be considered either as anapproximation of the centrifugal term with l = ��1 (� integer), or as a part ofa singular potential with arbitrary l 6= ��1. Setting � = 1 we get the \simple"Ginocchio potential [13] de�ned on the line, discussed also in subsection 3.1.2.In what follows we assume that � � 1 holds.The bound-state wavefunctions are expressed in terms of Jacobi polynomi-als (n)0 (r) = Nn(
2 + sinh2 u) 14 (sinhu)�(cosh u)��n��� 12P (�n;�� 12 )n (2 tanh2 u� 1)(110)which reduce to Gegenbauer polynomials for � = 1. The normalization is givenby Nn = " 2
2n! �(�n + �+ n+ 12)�n(�n + �+ 2n+ 12)�(�n + n+ 1)�(�+ n+ 12)(�n
2 + �+ 2n+ 12)# 12 : (111)Considering that the r ! 1 asymptotical limit corresponds to u ! 1 (see(106)), the wavefunctions become zero asymptotically if �n > 0 holds. Apply-ing this condition to (109) we �nd that the number of bound states is set bynmax < 12(s� �).Later on we shall use the Jost solutions with potential (105) satisfying [131]fJost0 (k; r)!r!1 i��1 exp(ikr) : (112)They can be expressed in terms of the two linearly independent solutions forarbitrary energy E = k2 and can be written asfJost0 (k; r) = exp(ikr1)(
2 + sinh2 u) 14 (�i sinhu)1��(cosh u)��(k)+�� 32�F�12��(k)��+�(k)+2�; 12��(k)����(k)+1�;�(k)+1; 1cosh2 u� ; (113)where �(k) = �12 + h�2(k)(1 � 
2) + (s+ 12)2i 12 ; (114)�(k) = � ik
2 (115)43



and r1 = 1
2 h(
2 � 1) 12 tan�1(
2 � 1) 12 � ln(
2 )i (116)as in [14]. The Jost solutions allow expressing the Jost function asF0(k) = �� k2���1 � 12�(�� 12) limr!0�r��1fJost0 (k; r)�= �� ik2 ���1 � 12 
��+ 32 exp(ikr1)��1 + �(k)���12(�(k) + �� �(k))���12(�(k) + �+ �(k) + 1)� :(117)This provides the S-matrix asS0(k) = exp(2i�0(k)) = (�1)��1F0(�k)F0(k) ; (118)which, together with the substitutions discussed previously, gives the resultof [14], up to a (�1)l phase. This di�erence is due to the fact that, for thede�nition of this S-matrix, we consider here that the Ginocchio potential is asingular potential in the l = 0 partial wave, rather than a regular potential inthe l = � � 1 partial wave. This is quite natural since we allow here � to benon integer. This convention also explains the unusual factors of (112), of the�rst line of (117), and of the de�nition of the S-matrix in terms of the Jostfunction in (118), as explained in [131]. As can be veri�ed by equation (118),the S-matrix tends to 1 for k ! 0, and to exp[i�(1 � �)] at in�nity. This isin accordance with the Levinson theorem, generalized for singular potentials[41], �0(0)� �0(1) = �nmax + 1 + �� 12 ��: (119)3.1.3 A Natanzon potential from a point canonical transformationWe start with presenting the potentials introduced by Dutt et al. [23] asconditionally exactly solvable (CES) models. The two potentials de�ned onthe full axis x 2 (�1;1) can be written in a common form asV (g0;g1;g2;g3)(x) = g0ex z(x) + g1z(x) + g2z2(x) + g3z4(x) ; (120)with z(x) = (1 + e�2x)1=2 2 (1;1). The explicit form of these potentials [23]is V (DKV )1 (x) = V (0;�B;A;�3=4)(x); V (DKV )2 (x) = V (�B;0;A;�3=4)(x) : (121)44



These potentials depend on two parameters (A and B) which de�ne the poten-tial shape. The coupling constant of the third potential term has to be �xed toa constant value (�3=4) in order to obtain exact solution of these models. Thisis why the authors of [23] identi�ed these potentials as conditionally exactlysolvable (CES) ones.One can easily demonstrate that the two potentials, in fact, are equivalent[P11] in the sense thatV (0;�B;A;�3=4)(x) = V (�D;0;C;�3=4)(�x) + " ; (122)where " = �A + 3=4; C = �A + 3=2; D = B : (123)Thus, in what follows it is su�cient to deal with only one of the potentials, sowe pick V (DKV )1 (x) for our analysis [P11].In [23] potentials (121) were introduced using the point canonical trans-formation method [117], by which a Schr�odinger-type di�erential equationcan be transformed into another equation of this type, applying an invert-ible parametrization r = r(x). With this change of variables, dating back toLiouville [118] a given asymptotically free equation"� d2dr2 + U(r)# �(r) = ��2 �(r) (124)can be transformed into an apparently di�erent bound state problem"� d2dx2 + V (x)#  (x) = �k2  (x): (125)After we denote the derivative by a prime (x0(r) etc.), an elementary cor-respondence between the potentials and/or energies is obtained,U(r) + �2 = [x0(r)]2 �V (x(r)) + k2�+  34 x00(r)x0(r)!2 � 12 x000(r)x0(r) : (126)Obviously, the \old" energy eigenvalues are related to the parameters of the\new" potential, and vice versa. The formal de�nition of the new wavefunc-tions is also virtually trivial, (x) = [x0(r(x))]1=2 �(r(x)) : (127)In any situation of practical interest one may just pick a suitable exactlysolvable (ES) problem (124) and derive quickly its partner (125). Setting out45



from two shape-invariant [18] ES potentials de�ned on the positive half axis,Dutt et al. [23] used the variable transformation x = ln(sinh r) to obtainpotentials (121). The particular initial potentials and their energies wereU1(r) = �2bcosh rsinh r +a(a�1) 1sinh2 r ; �2 = �2m = (a+n)2+b2=(a+n)2 (128)(with b > (a+ nmax)2) andU2(r) = �(2a+ 1)b cosh rsinh2 r + ha(a+ 1) + b2i 1sinh2 r ; �2 = �2n = (a� n)2(129)(with b > a > nmax). This can be recognized as the Eckart potential in table1. Recalling the bound-state wavefunctions of potentials Uj(r), the solutionsto potentials V (DKV )j (x) in (121) readily follow from (127). Without the lossof generality we can consider the j = 1 case and recall the solutions of U1(r)(see e.g. [10, 3]) in terms of Jacobi polynomials,�(z) = (z � 1)� 12 (a+n�s)(z + 1)� 12 (a+n+s)P (�a�n+s;�a�n�s)n (z); s = b=(a + n)(130)with z = z(r) = coth r. Using this function in (127), substituting it intothe Schr�odinger equation and matching parameters a and b with A and B ofV (DKV )1 (x) in (121), we �nd B = 2b andA = n2 + 1=2 + (2n+ 1) a+ b2=(a+ n)2: (131)This equation will ultimately determine the energy eigenvalues through a cubicequation of quantum number n, as described also in [23].Let us now continue with the analysis of the energy eigenvalues based onthe formula (131). The key element of our approach is the strict observationof the constraints imposed on the parameters by the boundary conditions ofthe wavefunctions. By this we mean both the solutions of the \old" potentialU1(r) (128) and those of the \new" one V (DKV )1 (x) (121).The appropriate physical boundary condition for (130) near the thresholdr ! 0 implies that we have to choose a > 1=2. Then, after the transitionfrom r to x we get the wavefunctions still safely normalizable near the leftin�nity x! �1. Similarly, our explicit wavefunctions remain asymptoticallynormalizable near the right in�nities r ! 1 and x ! +1 if and only ifwe have a + n < b=(a + n). This means that the eligible quantum numbersn = 0; 1; : : : ;M have to be such that 0 �M < b1=2 � a, i.e.,(n + 1=2)2 < (a+ n)2 < b: (132)46



Without presenting the details, we just state the main result of the analysisgiven in [P11] regarding the choice of the physical solution of the cubic algebraicequation (131): the general rule is that always the middle root is the physicalone.Let us now turn to the interpretation of the potential V (DKV )1 (x) in (122).Obviously, the transformation employed in [23] (i.e. the point canonical trans-formation [117] or the Liouvillean method [118]) is a special case of the trans-formation method [9, 10] presented in subsection 2.1. TakingQ(z) = 0 ; R(z) = ��2 � U(z) ; (133)Equation (7) reduces to the inverted version of (131) (with r and �k2 therereplaced with z and E here). Similarly, (8) also reduces to the equivalent of(127), where �(r) is playing the role of F (z). From this it is clear that incontrast with the claim of the authors of [23], the potentials in (122) shouldbe referred to as Natanzon-class potentials, rather then CES ones.The approaches applied in [9, 10] (reviewed in subsection 2.1) and in thepoint canonical transformation [117] emphasize somewhat di�erent strategiesof deriving solvable potentials within the Natanzon potential class [8]. In[9, 10] the main point is to identify some term on the right-hand side of (7),to account for the constant (i.e. the energy) term on the left-hand side. Withthis, a di�erential equation of the type (9) is obtained, and this determines thefunction z(x) describing the variable transformation. In some cases the z(x)function could not be determined explicitly from (9), only the inverse x(z)function, therefore a number of solvable models obtained this way turned outto be \implicit" potentials. On the other hand, following the point canonicaltransformation method [117], the z(x) function is always available in an explicitform, however, it is not guaranteed that any z(x) function would lead to aSchr�odinger-like equation in which all the n-dependence can be absorbed intothe constant (energy) term. Equation (131) might turn out to have Sturm{Liouvillean form, where n typically appears in coordinate-dependent terms.Simply stated, the approach of [10] focuses on having the energy in a simpleform, even on the expense of leaving the solutions in a complicated (implicit)form, while in the point canonical transformation the preference is having thesolutions in an explicit form, rather than getting the energy expression in asimple way. We stress that despite this di�erence, the two approaches areinterrelated, and are special cases of deriving Natanzon-class potentials.Let us now see how potential V (DKV )1 (x) in (121) can be obtained from themethod described in subsection 2.1. The choice ofz2(z0)2(1� z2)�2 = C (134)47



in (89) was not discussed in detail in [10], only the generic form of the so-lution was mentioned. However, it turns out, that the function z(x) = [1 +exp(2C1=2x+D)]1=2 satis�es (134), and it leads to the same variable transfor-mation as that discussed in [23], if the C1=2 = �1 and D = 0 choice is made.The actual form of (7) is nowEn � V (x) = � n+ � + � + 12 !2 + 12(� � �)(� + �)z�1(x) + 34z�4(x)+ 24 n + �+ � + 12 !2 �  � + �2 !2 � 34 � 14(� � �)235 z�2(x) : (135)This leads to a solvable potential if the n-dependence can be canceled in thecoordinate-dependent (i.e. potential) terms by a suitable change of the param-eters. Comparing (135) with (121) we getA = � 24 n+ � + � + 12 !2 �  � + �2 !2 � 34 � 14(� � �)235 ; (136)B = 12(� � �)(� + �) ; (137)and En = � n+ � + � + 12 !2 : (138)Obviously, � and � depend on n and also on the potential parameters A andB. Substituting (138) in (136) and combining it with (137) we arrive at (131),the equation de�ning the energy eigenvalues.The bound-state wavefunctions are found to be (x) � z1=2(x)(z(x) + 1)�n=2(z(x)� 1)�n=2P (�n;�n)n (z(x)) ; (139)which (apart from some misprints), corresponds to equations (15), (16) and(18) in [23], if we substitute �n = B=(2c)� c and �n = �B=(2c)� c.Finally, it is worthwhile to analyze this potential in terms of the formalismof Natanzon potentials, as discussed in subsection 2.1. It is particularly in-structive to examine the role of the 3+3 parameters appearing in the Natanzonpotentials, as it is related to the concept of conditionally exact solvability. Forthe most commonly occuring potentials (like the shape-invariant ones [18]),the three parameters determining the z(x) function via (13) and (12), usually48



only one appears, and even that one is a trivial scaling parameter of the co-ordinate and/or the energy scale. (Trivial coordinate shifts can also appearthrough them.) Usually they play a non-trivial role only in the case of some\implicit" potentials [13, 62, 119, 16, P11]. In the present case the di�erentialequation (134) corresponds to taking a1 = 4c1 = 4c0 = 4=C, and on this basiswe can identofy the V (DKV )i (x) potentials with those dicussed in [17].The other three parameters appearing in (11) set the potential shape, anddetermine the relative strength of the individual potential terms. In mostpotentials only one or two of these parameters appear. The two parametersappearing in potential (121), A and B are of this type. (There could beone more parameter setting the length scale, but it is set to 1 in this case.)Obviously, when there are three potential terms, as in (121), and only twoparameters, then the relative strength of the three potential terms cannot bearbitrary, and has to be constrained. This is why the third term of (121) isa numerical constant, i.e. �3=4. It is the presence of this numerical constantwhich earned potentials in [22, 23] the name \conditionally exactly solvable".In fact, based on the structure of their eigenfunctions, the potentials appearingin [23] are of the Natanzon type [8], while those in [22] belong to the Natanzoncon
uent class [12]. There are, however, further considerations regarding nor-malizability and regularity, which might impose restrictions on the solvabilityof certain potentials. Not surprisingly, these may play a more important rolein the case of the less \trivial" potentials [120].3.2 Supersymmetric quantum mechanicsThis subsection is divided into three parts containing results from three �elds:single and iterated SUSYQM transformations, as well as the generalization ofthe factorization technique to spin degrees of freedom.3.2.1 Single supersymmetric transformationsHere we discuss conditionally exactly solvable (CES) potentials generated fromsupersymmetry as the supersymmetric partners of some simple potentials [121,122]. The CES nature of these potentials hinges on the question whether theparameters of their partners can be chosen in such a way that they can bereduced to some simple potential with known solutions and energy eigenvalues.According to the techniques of supersymmetric quantum mechanics, the CESpotentials constructed in this way are then essentially isospectral with theirpartners, i.e. the two spectra are identical or di�er only in their ground state.49



The bound-state solutions of CES potentials are obtained from those of theirsimple (Natanzon-type) partner potentials by acting on these latter ones withlinear di�erential operators. In [121, 122] some CES potentials have beenconstructed by SUSYQM. Here we show that this procedure can be made moresystematic by making use of various types of SUSYQM transformations [P7].The rather general nature of this treatment allows the recovery of known resultsand also the derivation of new CES potentials in the same framework. Ourexamples concern CES potentials related to the harmonic oscillator potential inthree or one dimension (the standard examples of [121, 122]), but the formalismis equally applicable to other types of potentials as well.Let us start with presenting the conventional SUSYQM approach to CESpotentials [121, 122]. Let us assume that there is a pair of SUSYQM partnerpotentials V (0)� (r), which can be constructed from a superpotential W0(r) inthe usual way: V (0)� (r) =W 20 (r)�W 00(r) : (140)Consider now a superpotential of the formW (r) = W0(r) + w(r) : (141)The partner potentials generated from W (r) are thenV+(r) = V (0)+ (r) + 2W0(r)w(r) + w2(r) + w0(r) (142)V�(r) = V (0)� (r) + 2W0(r)w(r) + w2(r)� w0(r) : (143)Let us now insist on that one of these potentials, say V+(r) is related to someknown potential up to an energy shift. In the simplest case this could beV (0)+ (r) in (140): V+(r) = V (0)+ (r) + � : (144)Combined with (142), this requirement immediately introduces a Riccati-typedi�erential equation for w(r):w2(r) + w0(r) + 2W0(r)w(r) = � : (145)If this equation is solved, then a pair of SUSYQM potentials is obtained, fromwhich one of the partner potentials, V+(r), corresponds to a known potential(up to an energy shift). Therefore, both the spectrum and the wavefunctionsof the partner potential V�(r) can be obtained in the usual way.50



In the examples in [121] V (0)+ (r) was the harmonic oscillator potential in1 and 3 dimensions, with W0(r) being the corresponding superpotential. Inboth cases the structure of w(r) was of the typew(r) = NXi=1 2gir1 + gir2 : (146)In the practical examples N=1 was used.Let us now present a more general alternative SUSYQM construction ofCES potentials. As discussed in subsection 2.2, a potential V1(r) isospectralwith a known potential V0(r) can be constructed by (44), where �(r) is asolution of the Schr�odinger equation with potential V0(r) and � is the factor-ization energy. Depending on the value of � and the boundary conditions ofthe solution �(r), V1(r) in (44) will have various properties. As discussed insubsection 2.2 (see table 2), for a radial problem (in three-dimensions) fourtypes of transformations are possible. These are related four di�erent types ofnodeless solutions �(r) of the Schr�odinger equation. The nodelessness of �(r)guarantees that the resulting potential V1(r) does not have singularities for�nite values of r (besides the origin), and this can be achieved whenever thefactorization energy � is below the ground-state energy of V0(r) [36].Let us consider the radial harmonic oscillator as an example and solve theSchr�odinger equation for �(r) withV0(r) = V (0)+ (r) = W 20 (r) +W 00(r)= r2 + 
(
 + 1)r2 + 2
 + 3 : (147)Here the superpotential is W0(r) = r + (
 + 1)r�1, and the bound states ofV0(r) are found at En = 4n+4
 +6. The solution �(r) can be searched for inthe form �(r) ' rA exp�B2 r2�F (a; b;Cr2) ; (148)where F (a; b; z) is the con
uent hypergeometric function [19]. Straightforwardcalculation shows that the Schr�odinger equation transforms into the con
uenthypergeometric equation if the following conditions hold:A(A� 1) = 
(
 + 1) ; B2 = 1 ; B = �C ; (149)b = A+ 12 (150)a = � �2C + 
2C + 34C + A2 + 14 : (151)51



Recalling that besides F (a; b; z), z1�bF (a� b+1; 2� b; z) is a linearly indepen-dent solution of the same con
uent hypergeometric function [19], the generalsolution �(r) has the form�(r) ' exp�B2 r2� ��1r
+1F ( �2C + 
2C + 34C + 
2 + 34 ; 
 + 32;Cr2)+�2r�
F ( �2C + 
2C + 34C � 
2 + 14 ;�
 + 12;Cr2)� : (152)Note that the two terms in (152) are connected by the 
 $ 1 � 
 transfor-mation, therefore it is enough to consider one of the solutions (A = 
 + 1 orA = �
) of A(A� 1) = 
(
 + 1) in (149). The solutions corresponding to thetransformations T1, T2, T3 and T4 in table 2 can then be identi�ed by imposingthe appropriate boundary conditions on �(r).Substituting the �(r) function in (44) one obtains an expression for V1(r) interms of �0(r) and �00(r). Ultimately V1(r) can be expressed in terms of V0(r),� and �0=�. In this last expression the �rst-order derivatives of two con
uenthypergeometric functions occur, each of which can be expressed in terms ofanother con
uent hypergeometric function [19]. This means that V1(r) canbe expressed in a somewhat complicated, but closed analytic form. A specialsituation occurs when a = �N or a � b + 1 = �M holds. In this case one ofthe con
uent hypergeometric functions occuring in (152) reduces to an N -th orM -th order (generalized Laguerre [19]) polynomial of the argument. Accordingto (151), this case corresponds to speci�c choices of the factorization energy�. Let us now consider the four transformations T1, T2, T3 and T4 one by one[P7].We �rst note that the boundary conditions require �2 = 0 in the T1 and T3cases, while in the T2 and T4 cases both �1 and �2 are allowed, and their ratioappears in V1(r) as a new parameter. However, for simplicity we consider only�1 = 0 in the T2 and T4 cases and also reduce the remaining con
uent hyper-geometric function to an N 'th order polynomial by setting its �rst parameterto �N . With these choices V1(r) can be written in a compact form:V1(r) = r2+ 
(
 + 1) + 2Ar2 +2
+3�2B�2 d2dr2 lnF (�N;A+ 12;Cr2) : (153)The solutions relevant to the T1, T2, T3 and T4 cases can then be obtained bysubstituting [A;B;C] = [
+1;�1; 1], [�
; 1;�1], [
+1; 1;�1] and [�
;�1; 1],respectively. In the N = 0 case the last term in (153) cancels and V1(r)contains only terms characteristic of the three-dimensional harmonic oscillator52



potential. For N = 1, F (�1; A+ 12 ;Cr2) = 1+ g1r2, with g1 = �2C=(2A+1),which gives rise to two new terms [P7]V1(r) = r2 + 
(
 + 1) + 2Ar2 + 2
 + 3� 2B + 8g21r2(1 + g1r2)2 � 4g11 + g1r2 : (154)In the T1 case A = 
+1, B = �1 and C = 1 has to be taken. The a = �Ncondition leads to � = 4N + 4
 + 6. This factorization energy corresponds tothe bound-states energies of V0(r) = V (0)+ (r) and �(r) simply reproduces thephysical wavefunctions. However, only the n = 0 ground-state wavefunctionis nodeless, so only this can lead to singularity-free V2(r). Therefore the T1transformation simply retrieves the classic SUSYQM transformation whicheliminates the ground state of V0(r) and increases the value of 
 with one unit.In the T3 case the appropriate choice is A = �
, B = 1 and C = �1. Thea = �N polynomial condition then leads to the speci�c factorization energies� = �2N , which are always below the ground-state energy of V0(r), so thenodelessness of �(r) is always secured. The N = 0 choice recovers V1(r) asanother oscillator with the same spectrum as V1(r): only the value of 
 isincreased with one unit and the energy is shifted downwards with two units.The N = 1 case results in the CES potential described in [121] (denoted byV�(r) there) up to an energy shift. Similar, but more complicated isospectralpotentials would arise from choosing N > 1.In contrast with the previous two cases, for the T4 transformation theboundary condition at the origin now allows both the regular and the singularsolution in (152). Similarly to the T3 case, the T4 one is usually also interpretedas a situation with broken supersymmetry, because the spectra of the partnerpotentials (and, of course, of the whole family) is identical. Simplifying theproblem by considering only �1 = 0 in (152) we get the resulting potentialfrom (153) with A = �
, B = �1 and C = 1. The a� b+1 = �N polynomialcondition now leads to factorization energies � = 4N + 4. The N = 0 choiceagain results in another harmonic oscillator potential, with 
 decreased withone unit and with an energy shift of two units upwards. For N = 1 a potentialsimilar to that in [121] arises, whenever 
 > 1=2 holds. (As we have mentionedalready, this latter condition secures that the polynomial F (�1;�
 + 12 ; r2) =1+2r2=(2
�1) remains nodeless, and there will be no singularities in the V1(r).In fact, the 4
 + 6 = E0 > � = 4N + 4 condition also leads to 
 > 1=2 forN = 1.) Similarly to the T3 case, further potentials isospectral with a harmonicoscillator can be constructed by choosing N > 1, but the nodelessness of �(r)has to be checked in each case.In the T2 case the A = �
, B = �1 and C = 1 choice has to be made,53



and the situation is the same as in the T4 case: both the regular and thesingular solutions are allowed by the boundary condition at the origin. Thismeans, that we again have a whole family of potentials V2(r), which have thesame spectrum and di�er only in their shape. As before, we again restrict to�1 = 0 and consider the polynomial condition a � b + 1 = �N , which leadsto � = �4N + 4
 + 2. For N = 0 V2(r) is an oscillator with 
 replaced with
 � 1 and shifted lower with two units. Clearly, this corresponds to the usualSUSYQM transformation which inserts a new state (at E = 4
+2) below theground state of V0(r). For N = 1 we �nd that the potential (154) is nodelessonly if 
 < 1=2 holds. For N > 1 we have to check the nodelessness of �(r) ineach case, because it cannot be automatically guaranteed after we restrictedthe general solution by selecting �1 = 0 in (152).The relation of the two procedures outlined above can be interpreted in asimple way by noting that the partner potentials are linked by V+(r)�V�(r) =W 0(r) and V0(r)� V1(r) = (ln�(r))00. From thisW (r) = (ln�(r))0 + c (155)follows. Direct integration of (141) and (146) with W0(r) = r+ (
 + 1)r�1, asin [121] and c = 0, indeed, recovers the general solution �(r) speci�c to the T3case: �(r) ' r
+1 exp r22 !�Ni=0(1 + gir2) : (156)In addition to the notation of [121], g0 = 0 was also introduced for convenience.This function is also an N 'th order polynomial, as expected from (148) fora = �N .Finally, we note that further single SUSYQM transformations are discussedin subsection 3.5, where the interrelation of di�erent symmetry concepts isanalyzed.3.2.2 Combined supersymmetric transformations and phase-equiv-alent potentialsAnalytic exploration of phase-eqivalent complex potentialsIt has been known for a long time that the interaction of composite nuclearobjects can be described with potentials essentially di�ering in their shape anddepth. In particular, it was known that a \deep" and a \shallow" family of po-tentials can account for the same phase shifts. This duality of deep and shallowpotentials describing the interaction of composite nuclear systems (clusters) is54



understood qualitatively on the basis of the Pauli principle [123]. Accordingto this, states with low node number in the relative motion are discarded fordeep potentials on grounds that they would correspond to states in which thenucleons of the di�erent clusters occupy the same state of the compound nu-cleus. In shallow potentials, on the other hand, the Pauli principle is takencare of by a repulsive core, which prevents the two clusters from getting tooclose to each other.For real potentials, the apparent di�erence between deep and shallow po-tentials can be exactly eliminated by constructing phase-equivalent potentials[37]. Indeed, supersymmetric transformations [36], which are based on a factor-ization of the Hamiltonian, allow to construct potentials which provide exactlythe same phase shifts as a given potential [37, 124, 44, 43, 45]. Deep poten-tials can be transformed into equivalent shallow potentials by removing theirunphysical bound states. The resulting shallow potentials display a singular-ity at the origin which is unavoidable according to the generalized Levinsontheorem [41]: the variation of the number of bound states is compensated bythe singularity in order to keep a constant di�erence of phase shifts betweenzero and in�nite energies. As a consequence, the resulting shallow potentialusually depends on the angular momentum.However, realistic heavy-ion collisions are not restricted to a single channel.In order to take absorption into account, complex optical potentials need tobe used [76]. Is it possible to transform a complex potential with a deepreal part into potentials with a shallow real part and to maintain the phaseshifts in the process, similarly to real potentials? To answer this question onehas to venture into largely unexplored territories. The main di�culty here is�nding normalizable solutions of complex potentials. Several questions arise.How many normalizable solutions can one �nd for a given complex potential?Which types of square-integrable solutions exist in a general case? Can anyof them be removed and should it be done? Indeed it is known that the realpart of their energy is not necessarily negative [125]. This new type of "boundstate" has no clear physical meaning. Do the normalizable solutions presentnodes and, if so, does it matter?In [P3] these questions were addressed, and phase-equivalent complex po-tentials have been constructed numerically. In order to aid the numericalstudies, the exactly solvable complex P�oschl{Teller potential was also studied[P3], in the hope that potentials that have similar shape would lead to similarresults using numerical techniques.Before turning to the particular potential itself, it is worthwhile to summa-rize what one can know about normalizable solutions in a complex potential.55



Consider the Schr�odinger equation � d2dr2 + U(r) + iW (r)! (r) = E (r) (157)with the condition W (r) < 0 and assuming that the real part U(r) includesthe centrifugal term.We are interested in normalizable (or square-integrable) solutions of (157)with the boundary condition  (0) = 0. The corresponding complex eigenvaluesE are parametrized as E = ��2 with � = j�jei�, where ��2� < � < �2�, so thatRe � > 0. For a potential decreasing fast enough, the asymptotic behaviour ofa normalizable solution is  !r!1 exp(��r) ; (158)corresponding to an exponentially damped oscillation. When V (r) behaves asa Coulomb potential at large distances, this exponential is multiplied by some(possibly complex) power of r.The normalizable solutions of (157) and their energies E verify some simplegeneral properties. One easily shows [125] thatImE = R10 j j2WdrR10 j j2dr : (159)Hence the existence of a minimumWmin for W (r) and the condition W (r) < 0lead to bounds for the imaginary part of the complex energy, Wmin < ImE <0 : Moreover, the phase � in � is positive 0 � � < 12� : In a similar way, oneshows with a partial integration thatReE = R10 j j2UdrR10 j j2dr + R10 j 0j2drR10 j j2dr : (160)Hence, the real part of the eigenvalue is bounded from below Umin < ReE.However, ReE can be positive because of the second term in (160), even whenU(r) is attractive everywhere. A purely imaginary potential can only supporteigenvalues with ReE > 0.Further more complicated bounds [P3] can be obtained by replacing r bye�i�r in (157), in the spirit of the complex-rotation technique [126].In what follows we analyze the solutions of the P�oschl{Teller potential asa radial problem [20], also allowing it to the complex domain. This potential56



can be interpreted as the special case of several shape-invariant potentials (seetable 1). Here we parametrize it asV (r) = �s(s+ 1)cosh2 r : (161)The energies of the bound states are given byEn = ��2n = �(s� 1� 2n)2 ; (162)where n satis�es 2n + 1 < s. The corresponding wavefunctions are written interms of Gegenbauer polynomials as (n)(r) ' (cosh r)2n+1�sC(s� 12�2n)2n+1 (tanh r) : (163)These wavefunctions decay exponentially for the allowed values of n.For positive energies E = k2 (k > 0), the regular wavefunction reads (r) ' sinh r(cosh r)�s � F �12(�s+ 1� ik); 12(�s+ 1 + ik); 32;� sinh2 r� ;(164)where F is the hypergeometric function. From the asymptotic behaviour onededuces the collision matrixS(k) = A exp(2i�) = ��12�2ik �(ik)� �12(2 + s� ik)�� �12(1� s� ik)��(�ik)� �12(2 + s+ ik)�� �12(1� s+ ik)� ;(165)where A and � are real. Except for a misprint, the same formula can be foundin [31].Now we choose for s the complex values = � + ie� : (166)It corresponds to a potential strength�(u+ iw) = �[�(� + 1)� e�2]� ie�(2� + 1) ; (167)where both u and w should be positive in physical applications. We shallassume that � and e� are both positive.All the formulae (161) to (165) remain valid for a complex s. The conditionfor having a square-integrable wavefunction  n(r) becomes Re �n > 0, i.e.Re (� � 2n� 1 + ie�) > 0 ) 2n+ 1 < � (168)57
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Figure 3: Division of the uw plane according to conditions (168) and (169) fora complex P�oschl-Teller potential with strength �(u + iw): total number ofnormalizable states (left) and number of eigenvalues with a positive real part(right). The points PT1 and PT2 correspond to the examples discussed in thetext.This is di�erent from the condition Re (En) < 0 which reads(� � 1� 2n)2 � e�2 > 0 ) 2n+ 1 < � � e� (169)The situation is best seen in �gure 3 where the uw plane is divided up accordingto the number of square-integrable states and of states with Re (En) > 0.This splitting between two kinds of eigenstates naturally appears with theintroduction of complex potential parameters. In the real case (w = 0) thedi�erence between (168) and (169) disappears. It is clear from the graphthat a purely imaginary potential can have normalizable solutions but cannotsupport states with Re (En) < 0 (see (160)). A potential with a shape closeto that of V (r) in (164), most probably also shows these features. We expectsimilar properties for normalizable solutions of potentials where the real andimaginary parts have di�erent shapes.Numerical tests were performed in [P3] for two potentials of the type (164),and the results were compared with the exact ones. The �rst potential (PT1)58



was chosen to have a rather weak imaginary part and four bound states in-cluding one with a positive real part, and corresponded to s = 7:1+0:2i. Theresults for this potential resembled much to those of bound states in everyrespect, and the phase-equivalent removal of its state with positive real partof the energy lead to a realistic potential [P3]. As another example we con-sidered a potential (PT2) with a stronger imaginary part, corresponding tos = 5:1 + 2i. For this case the numerical methods led to poorer results.In some cases the phase-equivalent potential obtained after the removal ofstates showed an oscillatory behaviour, and this �nding could be understoodin terms of the analytical calculations. In particular, the oscillations could beexplained by equation (45): whenever the modulus of the (complex) denom-inator there is small, oscillations can occur [P3]. These analytical estimatesindicated that this unphysical oscillatory behaviour can occur when normal-izable solutions with Re � << Im� are removed.The results with the P�oschl-Teller potentials indicate that the search for nor-malizable solutions and the construction of phase-equivalent potentials canbe performed with high accuracy. In addition to the analysis of the energyeigenvalues and phase shifts, further tests of the numerical methods can beperformed by comparing the wavefunctions and the transformed potentialswith the corresponding analytical expressions.Exact analytic formulae for phase-equivalent potentialsThe success of analytical methods in aiding numerical analyses also raisesthe question whether it is possible to �nd examples where the whole proce-dure can be performed in an analytical way, i.e. whether there are cases wherethe resulting potential is obtained in a closed algebraic expression. E�orts inthis direction have been limited to some particular examples from the well-known shape-invariant potential class [18]. The ground state of the Coulomb[127, 128], Morse and Hulth�en [129] potentials have been removed while keep-ing the phase shifts unchanged, and somewhat more general transformationshave been formulated for the Coulomb [128, 44] potential. Other potentialshave also been studied without analyzing the e�ect of the transformations ontheir spectra [130]. Apart from their aesthetic value, the importance of fullyanalytical transformations lies in the fact that exact results can be obtainedeven in critical conditions when the numerical techniques might not be safelycontrolled. Handling complex potentials can raise such problems, for example[P3, 6].The abstract formalism developed for the derivation of phase-equivalentpartners of known potentials can be applied to the rather general Natanzon59



potential class [8], which contains all the shape invariant potentials [18] as spe-cial cases. In order to demonstrate this we derived [P4] potentials which arephase-equivalent with the generalized Ginocchio potential [14], which is proba-bly the most well-known member of the Natanzon potential class. As opposedto other approaches to solvable potentials, where the exact treatment of po-tentials requires the analytical solution of di�erential equations, constructingexactly solvable phase-equivalent potentials requires the analytic evaluation ofcertain de�nite integrals. Our �rst results in this �eld concerned the deriva-tion of phase-equivalent partners of the generalized P�oschl{Teller potential byremoving any single bound state, adding a single bound state at speci�c en-ergies and eliminating the �rst few bound states [C2]. However, we do notmention these results here separately, because apart from the removal of the�rst few bound states, they are contained implicitly among the results of ouranalysis concerning the generalized Ginocchio potential [P4], which containsthe generalized P�oschl{Teller potential as a special (shape-invariant) subcase.Let us consider the generalized Ginocchio potential (105) and assume thatwe want to eliminate the bound state with quantum number N . Following thenotation of (110) the N 'th wavefunction can be written in a polynomial form (N)0 (r) = (
2 + sinh2 u) 14 (sinh u)�(cosh u)��N�2N��� 12pN(cosh u) ; (170)where the coe�cients ofpN(cosh u) = NN(cosh u)2NP (�n;�� 12 )N (2 tanh2 u�1) � NXj=0 c(N)j (cosh u)2j (171)are written asc(N)j = NN(�1)N�j �(�N +N + 1)�(�N + 2N + �+ 12 � j)j!(N � j)!�(�N +N + 1� j)�(�N +N + �+ 12) : (172)The same formulae hold, of course, for any other bound-state wavefunction,which we label with quantum number n.In order to derive the new potential and the new bound-state wavefunc-tions using (45) and (46), the substitutions '0(k0; r) =  (N)0 (r) and '0(k; r) = (n)0 (r) have to be made now along with � = �1 in table 3. The integrals ap-pearing in (45) and (46) can then be expressed in terms of the general formulaINn(r) = Z r0  (N)0 (t) (n)0 (t)dt = (sinhu)2�+1(cosh u)�N+�n+2N+2n+2��1GNn(u) ; (173)60



where GNn(u) is de�ned asGNn(u) = 1(2�+ 1)
2 n+NXm=0 d(Nn)m (cosh u)2m�N + �n + 2N + 2n+ 2�+ 1� 2m� h(2�+ 1)(
2 � 1)cosh2 u + �(�N + �n + 2N + 2n� 2m)
2 + 2�+ 1�� F�� 12(�N + �n)�N � n +m+ 1; 1;�+ 32;� sinh2 u�i :(174)This expression can be derived using equations 3.194.1 and 2 in [132] afterrearranging the summation for the two running indices appearing in the poly-nomial form of  (N)0 (r) and  (n)0 (r). This also requires the introduction of thecoe�cients d(Nn)m � min(m;N)Xj=max(0;m�n) c(N)j c(n)m�j : (175)The resulting potential which has bound states at En in (108), except forn = N takes the formV2(r) = V0(r) + 2 
2 + sinh2 ucosh4 u sinh2 uh(pN(cosh u))2GNN (u) i2 � 2
2(pN (cosh u))2GNN(u)h 1
2 + sinh2 u � 2�N + 4N + 2�+ 1cosh2 u + 2�sinh2 u + 2cosh u p0N(cosh u)pN(cosh u)i ; (176)while the new bound-state wavefunctions are (n)2 (r) = (
2 + sinh2 u) 14 (sinhu)�(cosh u)��n�2n��� 12� "pn(cosh u)� pN(cosh u)GNn(u)GNN(u)# : (177)We note that in the 
 ! 1 limit equations (173) to (176) reduce to the corre-sponding formulae derived for the generalized P�oschl{Teller potential [C2].Figure 4 shows V2(r) (as in (176)) obtained by removing the �rst excitedstate (N = 1) of the reference potential. In accordance with the generalizedLevinson theorem (119) the (�� 1)�r�2-type singularity of V0(r) has changedto (� + 1)(� + 2)r�2 for V2(r), formally increasing the value of � with twounits. We do not plot here the corresponding wavefunctions, rather refer to[P4]. The Jost function of V2 is directly related to that of V0 (see table 3),which is analytically known (e.g. (117)). The S-matrices of V0 and V2 are thusidentical. 61
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To conclude this subsection we note that the results presented here and in[P4] are the �rst example for deriving phase-equivalent partners of a potentialoutside the shape-invariant class using the formalism of SUSYQM. Anothernovelty was that we also gave closed analytical expressions for the bound-state wavefunctions of the new potential. It is also important to note thatthe procedure of adding a new bound state to the spectrum requires an r�2-like repulsive singularity of the original potential, therefore it is generalizableonly to potentials that have this feature. This forbids a similar treatment of anumber of potentials (Morse, Hulth�en, Rosen{Morse, etc.).Similarly to other fully analytical transformations, these results might behelpful in testing numerical methods in situations that might be problematicin terms of numerical techniques. This is the case, for example, for certaintypes of complex potentials [P3, 130]: the present formulae are applicable tocomplex Ginocchio potentials without any major modi�cation. The particularcase of the Ginocchio potential o�ers analytical results for a potential withrather 
exible shape, which can be considered as a reasonable approximationof realistic potentials used in nuclear physics, for example.3.2.3 Factorization of spin-dependent HamiltoniansAs it has been discussed in subsection 2.2, isospectral Hamiltonians can begenerated by factorizing then in terms of two operators in the following way:H1 = QR ; H2 = RQ : (179)(In this part we use the notation Q and R instead of A and Ay normallyused in supersymmetric quantum mechanics.) As discussed previously, be-sides isospectrality, the Hermiticity of the Hamiltonians H1 and H2 can beguaranteed with the additional requirement Q = Ry. In the simplest case theone-dimensional (including the radial) Schr�odinger equation is factorized, andQ and R are de�ned as linear di�erential operators of the type � ddx +W (x).The formalism can be developed further by more sophisticated realizations,such as introducing spin variables in Q and R [P6, 133].Consider the factorization of the Hamiltonians (179) in terms of Q and Rde�ned asQ = � � (p+ a(r)) + C(r) ; R = � � (p+ b(r)) +D(r) ; (180)with units �h = 2m = 1. Assume that C and D are functions of r = jrj, andthat a(r) = f(r) r ; b(r) = g(r) r : (181)63



This choice naturally leads to potential problems with spherical symmetry.Substituting (181) into (180) one �nds thatH1 = p2 + (g + f)r � p+ i(f � g)� � L� ig0r � 3ig + gfr2 + CD+(C +D)� � p+ (fD + gC � i1rD0)� � r : (182)We note that the last two terms of H1 in (182) have pseudoscalar character.The corresponding formula for H2 readily follows from (182) by the f $ g andC $ D replacements. We note that (182) can be supplemented with furtherterms in case we abandon the spherical symmetry by generalizing a(r) andb(r) in (180) toa(r) = f(r) r+ r�A ; b(r) = g(r) r+ r�B ; (183)where A and B are axial vectors [P6].Table 4 summarizes the conditions under which some of the terms vanish,and also lists the consequences of certain prescribed properties of Q and R.These latter ones include conditions which guarantee the Hermiticity of H1and H2. Table 4 also lists the condition for time reversal invariance requiringthat the terms including � � p and � � r transform in the same way under timereversal.In a rather general class of quantum mechanical problems the Hamiltonianis Hermitian, has spherical symmetry, and is free from pseudoscalar and explic-itly linear derivative terms. The above conditions are met if C(r) = D(r) = 0and g(r) = �f(r) = f �(r) hold. The Hamiltonians obtained this way dependon the unspeci�ed function f(r) and describe two non-relativistic problemswith spin-orbit interaction:H1 = p2 + 2if� � L + if 0r + 3if � f 2r2 ; (184)H2 = p2 � 2if� � L� if 0r � 3if � f 2r2 : (185)The wavefunctions can conveniently be separated into spin functions, spher-ical harmonics and radial functions [P6].The construction outlined above can equally be applied to analyticallysolvable problems and those admitting only numerical solutions. In orderto illustrate the procedure, here we consider a problem of the former kind.Substituting f = icr�1 in (184) and (185) one obtains Hamiltonians in whichthe spin-orbit interaction appears in a Coulomb-like term:H1 = p2 + c2 � 2cr (� � L+ 1) ; H2 = p2 + c2 + 2cr (� � L+ 1) : (186)64



Table 4: Conditions guaranteeing certain properties of operators Q and R asde�ned by (180) and (181) and those of HamiltoniansH1 = QR and H2 = RQ.Prescription ConditionsProperties ofQ and R Qy = Q f �(r) = f(r) C�(r) = C(r)Ry = R g�(r) = g(r) D�(r) = D(r)Ry = Q f �(r) = g(r) C�(r) = D(r)R = Q f(r) = g(r) C(r) = D(r)Time reversalinvariance f �(r) = �f(r) g�(r) = �g(r)Properties ofH1 and H2 no � � p term C(r) = �D(r)no � � r term f(r)D(r) + g(r)C(r) C 0(r) = D0(r)�ir�1D0(r) = 0no � � p and� � r term either g(r) = f(r) and C(r) = �D(r)= const: 6= 0or C(r) = D(r) = 0no r � p term g(r) = �f(r)
Evidently, bound states can appear only when the coe�cient of the r�1 typeterm is negative. Without the loss of generality we can assume that c > 0holds: c! �c merely interchanges H1 and H2. Then the sign of the Coulombterm is determined by h� � L + 1i, which is l + 1 for j = l + 12 and �l forj = l � 12 . The resulting spectra are thenE(1+)nl = c2  1� (l + 1)2(n + l + 1)2! ; E(2�)nl = c2  1� l2(n+ l + 1)2! ; (187)where the superscripts `+' and `�' stand for states with j = l+ 12 and j = l� 12 ,respectively. There are no bound states for E(1�) and E(2+).The above energy eigenvalues can also be obtained from the matrix ele-mentshn0(l � 1; 12)jmjQjn(l; 12)jmi = �i�n0;n+1c [(n+ 1)(n+ 2l + 1)] 12n+ l + 1 ; (188)65



hn0(l + 1; 12)jmjRjn(l; 12)jmi = i�n0;n�1c [n(n + 2l + 2)] 12n+ l + 1 : (189)Similarly to the conventional Coulomb problem, the energy levels tend toa well de�ned value in the n!1 limit. This value is not zero, rather it is c2,due to the di�erent choice of the energy scale. E = 0 corresponds now to theground state of H1 for the states with j = l + 12 , as it can be seen from (187)with n = 0. This applies to any value l, so we have an in�nitely degenerateground state for H1. The corresponding energy levels are missing from thespectrum of H2, as it can be seen from (187).The �rst few energy levels of H1 and H2 are plotted in �gure 5. The energylevels exhibit a complex degeneracy pattern: E(1+)nl is the same whenever theratio (l+1)=(n+ l+1) has the same value, which can be realized in an in�nitevariety of ways. (A special case of this is the degeneracy of the ground statewith n = 0.) Similarly, E(2�)nl has the same value if l=(n+ l + 1) is �xed.Another example is obtained by substituting f(r) = i!=2 in equations (184)and (185) H1 = p2 � !� � L� 32! + !24 r2 ; (190)H2 = p2 + !� � L+ 32! + !24 r2 : (191)These equations describe oscillators, which also experience spin-orbit interac-tion, the strength of which is correlated with the oscillator constant. Withthis choice and j = l� 12 (190) and (191) lead to radial Schr�odinger equations,from which the energy eigenvalues can immediately be determined:E(1+)nl = 2!n ; E(1�)nl = !(2n+ 2l + 1) ; (192)E(2+)nl = !(2n+ 2l + 3) ; E(2�)nl = 2!(n+ 1) : (193)Again we �nd widespread degeneracy of the states of the two systems. There isan in�nite degeneracy for the E(1+)n;j = E(2�)n�1;l+1 levels for example, furthermore,we again �nd that the ground-state energy is in�nitely degenerate: E(1+)n=0;l = 0for any l [P6].We note that similar results have been obtained in a study [134] of the Diracoscillator [135]. This oscillator problem has also been derived previously in asupersymmetric framework [136] interpreting the \accidental degeneracies" interms of an su(2)�Osp(2/2) symmetry group.
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where �m(r2) is an m'th order polynomial of r2 [137]. Hamiltonians of thetype appearing in (194) can be obtained from equations (184) and (185) bysubstituting f = ia + ibr2 in them, which is clearly a generalization of theoscillator problem discussed before. In this case the quartic and sextic terms inthe Hamiltonians H(�)i , i = 1; 2 will be the same, together with the centrifugalterm, while the quadratic and constant terms become l-dependent. However,we �nd that the condition for quasi-exact solvability (as in (195)) is ful�lledonly by H(+)1 , and only for m = 0, i.e. for the ground state. This ground stateis in�nitely degenerate [P6], similarly to the Coulomb and harmonic oscillatorsystems.Relation to the Dirac equationIn the following example we elucidate the intimate relation between thesupersymmetric quantum mechanics (also in the form of the factorizationmethod) and relativistic quantum mechanics [4]. In particular, we presenta generalized approach to the Dirac oscillator [135], which also emerged in thepresent discussion as special case. We present a systematic search for the solu-tions of the Dirac equation [P2], in a manner somewhat similar to the methodapplied in subsection 2.1 to the Schr�odinger equation. For this we apply aninverse method: we start with a general expression for the minimal and non-minimal couplings in the Dirac equation, and then we reduce this equation toits radial form, in order to study some families of potentials which could besolved exactly or quasi-exactly. ,We consider the Dirac equation of the form (c = �h = 1)[� � (p� i�v(r)r� u(r)r) +m� � E]	 = 0; (197)where v(r) and u(r) are some functions of r and �, � and 	 are de�ned as� = � 0 �� 0 � � = � I 00 �I � 	 = �	1	2 � : (198)Squaring the coupled �rst-order di�erential equations in the usual way we getfor the 	1 component:hp2 � 2u(r)r � p+ (v2(r) + u2(r))r2 � 2v(r)� � L� r dvdr � idudr!� 3(v(r)� iu(r))i	1 = (E2 �m2)	1: (199)68



Separating the radial, angular and spin variables by writing 	1= r�1f(r)j(l 12)jmjithe following radial equation is obtained for f(r):h� d2dr2 + 2iru(r) ddr + l(l + 1)r2 + (rv(r))2 � ddr (rv(r))� 2(K + 1)v(r)+ (ru(r))2 + i ddr (ru(r))� �if(r) = 0 ; (200)whereK = j(j + 1)� l(l + 1)� 34 = ( l = j � 12 if j = l + 12�l � 1 = �j � 32 if j = l � 12 (201)and � = E2 �m2.Considering the following functional form for f(r)f(r) = r�exp(�z(r))�(r) (202)we �nd after straightforward calculations that this f(r) solves (200) for thespecial case of �(r) = const: and � = 0 (i.e. E2 = m2) if z(r) is chosen asz(r) = Z r r0(�iu(r0) + v(r0))dr0; (203)provided that �(� � 1) = l(l + 1) and � = K + 1 hold. With � = l + 1 and�l these are automatically ful�lled for the j = l + 12 and j = l � 12 cases,respectively. So far the functions v(r) and u(r) have not been speci�ed yet.Further solutions of (200) can be obtained if we choose �(r) as the con
uenthypergeometric function �(r) = F (�; �; g(r)). This substitution yields thefollowing expressions for the unspeci�ed g(r) and v(r) functions:g(r) = a r2 (a > 0); v(r) = a+ br2 (204)and also � = � + 12 + b and � = � �4a � K+12 + �2 with� = ( b+ 12 + jj � bj for j = l + 12b+ 12 + jj + 1 + bj for j = l � 12 . (205)Note, however, that we have not obtained any restictions for u(r) yet. Thewavefunctions then take the formf (+)(r) = r 12+jj�bjexp(�a2r2 + iw(r))F (�nr; 2b+ 1 + jj � bj; ar2)f (�)(r) = r 12+jj+1+bjexp(�a2r2 + iw(r))F (�nr; 2b+ 1 + jj + 1 + bj; ar2);(206)69



where we have used superscripts (+) and (�) to distinguish between the casesfor j = l + 12 and j = l � 12 , respectively, and w(r) is de�ned as w(r) =R r r0u(r0)dr0: This means that the u(r) function which has not been speci�edup to this point contributes to a phase factor. The corresponding energyeigenvalues are obtained from�(+) � (E(+))2 �m2 = 2a(2nr + l � 2j + 12 + b + jj � bj)�(�) � (E(�))2 �m2 = 2a(2nr + l + 12 + b + jj + 1 + bj) : (207)These results [P2] can be interpreted as the generalization of the Dirac oscilla-tor [135], which corresponds to a = m!, b = 0 and u(r) = 0. The extension ofthe Dirac oscillator in [138] is also included in these formulae with u(r) = 0,although the energy eigenvalues published in that work di�er slightly fromthose in (207) due to a di�erent parametrization used by the authors. Fur-thermore, (207) also includes another extension of the Dirac oscillator in [139]as a special case, where a linear potential has been considered in the minimalcoupling term in addition to the Dirac oscillator. This situation correspondsto taking a = m!s, b = 0 and u(r) = im!v. These authors also noted thatthe appearance of !v does not modify the energy spectrum, and the new termwith respect to the Dirac oscillator in
uences only the form of the wavefunc-tions. A simple explanation for this result can be given by remembering thatu(r) basically represents a phase factor. This is not evident from the formulaepresented in [139], nevertheless one should remember that choosing an imag-inary, rather than a real u(r) would break the hermiticity of the Hamiltonianin (197).Finally, we note that the sextic oscillator (194) can also be considered to solvethe Dirac equation with a generalization of the Dirac oscillator [P2]. For thisv(r) = c2r2+c0 and u(r) = 0 have to be considered, and the solution is trivialfor �(r) = const:3.3 Lie-algebraic methodsLie algebraic methods associated with the relatively simple shape-invariantpotentials [18] have already been discussed in much detail (see the review andreferences in subsection 2.3), so here I discuss algebras associated with certainNatanzon-class potentials [8]. I also discuss the role of various irreduciblerepresentations of SU(1,1) when the corresponding su(1,1) algebra plays therole of a spectrum generating algebra.70



3.3.1 Realization of the su(1,1) algebra with an extra parameterHere we �rst analyze an algebra associated with the Ginocchio potential men-tioneded already in subsection 2.1 and 3.1.2, and investigate the role of thisalgebra in the shape-invariant limit of the Ginocchio potential [C3]. Then wediscuss the role of the di�erent irreducible representations of su(1,1) when itplays the role of a spectrum generating algebra assocoated with a singularpotential.The algebraic version of the Schr�odinger equation with the Ginocchio po-tential (102) can be obtained after suitable variable and similarity transfor-mations [C3], which do not change the structure of the original algebra (seesubsection 2.3). We then getJ� = e�i�  �C� 12 (� + 1� z2(x)) 12 @@x � �2 z(x)� + 1� z2(x) � z(x)Jz! ; (208)jjmi = eim�(� + 1� z2(x)) 14 (1� z2(x)) 12 (�� 12 )C(�)n (z(x)): (209)Direct calculation reveals that the e�ect of J� on the basis states (209) ischanging n into n � 1 while leaving � = �j = m � n unchanged. Since thepotential parameters (i.e. � and � in (103)) are interrelated with � and n,we �nd that the generators ladder between states of potentials with di�erentshape in general. We also note that with the C = �4(�2 � 1)�1 and � = (�2 �1)�1 choice J� reproduce the generators presented in [59] for the Ginocchiopotential, apart from some minor misprints there.Let us now consider the special limiting cases [C3]. The � = 0 choice leadsto J� = e�i�  �C� 12 (1� z2(x)) 12 @@x � z(x)Jz! ; (210)which ladder between states of the potential V (x) = C�(� � 1)(1� z2(x))�1belonging to E = C(n + �)2. Since J+ and J� change n with one unit whileleaving � unchanged (which, due to � = 0 is now independent from n) su(1,1)is a spectrum generating algebra here. This is also re
ected by the fact thatthe potential strength depends only on �(�� 1) = j(j + 1), the eigenvalue ofthe Casimir operator, and the generators ladder between states with di�erentm = �j + n = � + n, which now sets the energy.The z(x) = i sinhx and C = �1 choice recovers the P�oschl{Teller potentialhole with J� = �ie�i�  � cosh x @@x + sinhxJz! (211)71



as generators, found also in [69]. The imaginary factor can be eliminated by amultiplication with i. This amounts to changing the functions h(x), g(x) andf(x) to ih(x), etc., which also turns the algebra into the compact su(2) [69].This is in line with the fact that the P�oschl{Teller potential has �nite numberof states. We note that using z(x) = sinx and C = 1 one gets the trigonometricP�oschl{Teller potential, which has in�nite number of states and is associatedwith the non-compact su(1,1) spectrum generating algebra. The singularitiesof this potential will later on be linked to various irreducible representationsof the non-compact SU(1; 1) group [C1].The � !1, C��1 ! eC limit leads to the generatorsJ� = e�i�  � eC� 12 @@x � z(x)�Jz � 12�! : (212)Introducing �(�+1) � (�+1)��1 we �nd that V (x) = � eC�(�+1)(1� z2(x))and E = � eC(� � n)2 = � eC(� � 12)2. The generators (212), again, ladderbetween states with neighbouring values of n, keeping � = ��n+ 12 unchanged.This, however, now means that n changes together with �, thus also with thepotential strength. Therefore J+ and J� connect states that have the sameenergy but belong to di�erent potentials, i.e. su(1,1) is a potential algebrahere. Contrary to the previous case, E is now related to the eigenvalue of theCasimir operator (j(j+1)), while the potential strength is set by the quantumnumber m = � + 12 .The P�oschl{Teller potential hole arises for z(x) = tanh x and eC = 1, whichcorresponds to the usual P�oschl{Teller limit (� = 1) of the Ginocchio potential.J� then turn into the standard form of the su(1,1) generators in the potentialalgebra formalism [61].In summary, we proved that in two important limiting cases, when theGinocchio potential reduces to the same types of (P�oschl{Teller-like) poten-tials, the algebra essentially remains unchanged, but its role becomes di�erentin the two cases: in one limit it is a spectrum generating algebra, while inthe second one it appears as a potential algebra. The compactness or non-compactness of the algebra depends on the actual transformation, which isalso re
ected in the structure of the energy spectrum. For the P�oschl{Tellerpotential hole the potential algebra was (the non-compact) su(1,1) and thespectrum generating algebra was (the compact) su(2). This situation is re-versed if we take the trigonometric version of the P�oschl{Teller potential hole.We note that the two algebras obtained as the special limits of the sameoriginal su(1,1) algebra together are able to connect all the states of a series72



of P�oschl{Teller potentials. Such algebras normally appear as subalgebras ofsome larger algebra.As discussed in subsection 2.3, various unitary irreducible representationsof SU(1,1) are associated with various types of solutions in the potential alge-bra approach: discrete and continuous unitary irreducible representations areassigned to bound- and scattering-state wavefunctions [61]. This is related tothe fact that the Casimir invariant of these problems is related to the Hamil-tonian of these potentials by H = �C2 � 14 , so the eigenvalues j(j + 1) of C2determine whether the energy is in the bound or the scattering domain (i.e.whether it is positive or negative).This naturally raises the question whether the unitary irreducible repre-sentations of SU(1,1) also play such diverse roles when su(1,1) is a spectrumgenerating algebra. To explore this question, let us consider the di�erentialrealization of the su(1,1) algebra (210) with h(x) = sinx, f(x) = cos x, g(x) =c(x) = 0. This is a spectrum generating algebra associated with PII type po-tentials, which one obtains from the eigenvalue equation (C2�j(j+1))jjmi = 0of the Casimir operator:sin2 x � d2dx2 + j(j + 1)sin2 x �m2! jm(x) = 0 : (213)Apart from the sin2 x factor this is the Schr�odinger equation with the trigono-metric P�oschl{Teller potential hole, which is a special case of several PII and PItype shape-invariant potentials listed in table 1. This problem can be lookedupon either as a potential restricted to x = [0; �], in which case it resemblesthe in�nitely deep rectangular well, or as an element of a periodic potential[C1]. This duality is also connected with the eigenvalue of C2.If j(j + 1) > 0, the potential goes to in�nity at the boundaries, thusseparating the x = [0; �] domain from the others. This is the case when oneconsiders the discrete unitary irreducible representation of SU(1; 1) (discreteprincipal series) D+j , with j taking negative integer or half-integer values. Thebound states are then associated with m, where its allowed values are [1]m = �j;�j � 1; ::: : The operators J+ and J� ladder between the boundstates and are elements of an su(1,1) spectrum generating algebra [69]. (Dueto the m! �m symmetry of 213 the same problem can also be described bythe D�j series.)For the continuous series [1] C0k and C1=2k j = �12 + ik (k > 0, real), and mtakes on integer or half-integer values. The eigenvalue of C2 is now �14�k2, sothat attractive inverse-square-like singularities appear at the boundaries. It iswell-known that �
r�2-like singularities result in the fall of the particle into73



the center of attraction if 
 > 14 holds [104], and it is obvious that the abovecase corresponds to such a 
.There also exist, however, the supplementary series [1, 61] (58) with �12 <j < 0. This unitary irreducible representation of SU(1; 1) has not played anyrole in the potential group approach, where hC2i was related to the energyeigenvalues, because the discrete and continuous series already accounted forthe bound and scattering solutions of the potentials considered there. Here,however, one can identify the supplementary series with \weakly" attractiveinverse-square-like potentials, since in this case �14 < j(j + 1) < 0 holds, andthe complications associated with the \strongly" singular potentials (as above)do not appear. Another peculiar feature of problems with \weakly" attractiveinverse-square-like potentials is that both independent solutions are regular atthe origin in this case [116].As we have suggested in [C1], the attractive potential associated with thesupplementary series of the SU(1; 1) group can also be looked upon as an ele-mentary cell of a periodic potential. In this case modi�cation of the boundaryconditions is required, which necessitates the modi�cation of the whole pro-cedure designed initially to study bound-state solutions. We note that in arecent study [140] the supplementary series have indeed been associated withthe band spectrum of periodic potentials.3.3.2 A parameter-free realization of the su(1,1) algebraAs an example for algebras with di�erential realizations not containing ex-tra parameters, I present an su(1,1) algebra associated with the generalizedCoulomb potential. As we have noted previously in subsection 2.3, these re-alizations typically appear in relation with problems associated with the con-
uent hypergeometric functions. The speciality of this example is that thedi�erential operators forming the algebra act on the generalized Coulomb{Sturmian basis states [P5], rather than on the physical wavefunctions.We de�ne the generalized Coulomb{Sturmian equation as a di�erentialequation which has similar structure to the eigenvalue equation (74) with po-tential (73)X̂�(�; r) � "� d2dr2 � 3C16(h(r) + �)2 + 5C�16(h(r) + �)3 + C(� � 12)(� � 32)4h(r)(h(r) + �)� �2�4 + �(n + �2 )! Ch(r) + � + C4 �2#�(�; r) = 0 ; (214)74



and is solved by the generalized Coulomb{Sturmian (GCS) functions [P5]hrjni � �n(�; r)=  �(n+ 1)�(n+ �)!1=2 (�h(r) + ��) 14 (�h(r)) 2��14 exp(��2h(r))L(��1)n (�h(r)) :(215)Here � is a parameter characterizing the generalized Coulomb{Sturmian basis.The GCS functions, being solutions of a Sturm-Liouville problem, have theproperty of being orthonormal with respect to the weight function C 12 (h(r) +�)�1. Introducing the notation hrjeni � �n(�; r)C 12 (h(r)+ �)�1 the orthogonal-ity and completeness relation of the GCS functions can be expressed ashnjeni = �nn0 (216)and 1 = 1Xn=0 jenihnj = 1Xn=0 jnihenj : (217)Straightforward calculation shows that both the overlap of two GCS func-tions and the hn0jĤ0jni matrix element can be expressed as a tridiagonal ma-trix, therefore the matrix elements of the E�Ĥ0 operator also have this feature[141, P5]:hnjE � Ĥ0jn0i = �nn0 24 �C 12�(2n+ � � ��)� C 12�4  � 4qC� + (2n+ �)!35� �nn0+1 (n(n + � � 1)) 12 0@ EC 12� + C 12�4 1A� �nn0�1 ((n+ 1)(n+ �)) 12 0@ EC 12� + C 12�4 1A : (218)This means that similarly to the D-dimensional Coulomb and harmonic oscil-lator potential, the matrix elements of the Green's operator can be determinedby using continued fractions, as described in [142]. The present results, there-fore, extend the applicability of this method to a new potential problem. Theformulae presented here reduce to those in [142] in the appropriate limits dis-cussed in subsection 3.1.1. The role of the Coulomb{Sturm parameter b usedin [142] is now played by C 12�=2. 75



We note that the generalized Coulomb{Sturmian functions can, in principle,be used in calculations for realistic systems such as the ��� cluster con�gu-ration of the 8Be nucleus [7].Having set the basis, an su(1,1) algebra[Ĵ1; Ĵ2] = �iĴ3 [Ĵ2; Ĵ3] = iĴ1 [Ĵ3; Ĵ1] = iĴ2 (219)can be de�ned in the following fashion:Ĵ3 = h + �C� X̂ + (n+ �2 ) ; Ĵ1 = Ĵ3 � �2hĴ2 = � iC1=2 (h(h+ �))1=2 ddr � i�4(h+ �) : (220)As can be seen from equation (214), Ĵ3 is diagonal in the basis (215) witheigenvalues m = n+ �2 . The elements of this basis can then be associated withthe discrete principal series D+j [1] mentioned in (54) and (55), for which theallowed values of m are m = �j, �j + 1, �j + 2; : : :, with j being negative.It is natural then to identfy j as j = ��2 . Direct calculations show that theladder operators connect the neighboring members of this basis:Ĵ+�n(�; r) � (Ĵ1 + iĴ2)�n(�; r) = [(n + 1)(n+ �)]1=2�n+1(�; r) ; (221)Ĵ��n(�; r) � (Ĵ1 � iĴ2)�n(�; r) = [n(n + � � 1)]1=2�n�1(�; r) : (222)We �nd that the eigenvalues of the Casimir invariantĈ2 = Ĵ23 � Ĵ21 � Ĵ22 (223)are �2 (�2 � 1) = j(j + 1), as expected, and that they set the strength of thefourth term in (214). For � 6= 0 this is the only singular term and it behaveslike 
r�2 with 
 = (� � 12)(� � 32) = 4j(j + 1) + 34 . It is interesting to inspectthe allowed values of 
 for the di�erent unitary irreducible representations ofSU(1,1). For the discrete principal series D+j � > 1 holds, which always secures�14 < 
, i.e. the potential has repulsive or \weakly attractive" [116] r�2-typesingularity. For the supplementary series [1] �12 < j < 0 holds, which resultsin �14 < 
 < 34 . This is exactly the domain where both independent solutionsare square integrable at the origin [116]: for 0 < 
 < 34 one of these vanishes atr = 0 and the other one is in�nite there, while for �14 < 
 < 0 both solutionsvanish at r = 0. From (215) it is seen that solutions regular and irregular atthe origin correspond to � > 12 and � < 12 . This seems to indicate that one76



regular solution (with � > 1) is associated with D+j , while the second squareintegrable solution, which is either regular or in�nite at the origin (dependingon �) might be related to the supplementary series, for which 0 < � < 1holds. For the sake of completeness we note that for the continuous series [1]C0k and C1=2k , j = �12 + ik (k > 0, real) is valid, which results in the stronglysingular 
 < �14 case. The solutions then oscillate in�nitely near the originand are unbounded from below [116], which can be interpreted as the fallingof the particle into the center of attraction [104]. The situation is similar tothat described in [C1] for the V (x) = 
 sin�2 x potential: the various unitaryirreducible representations of the SU(1,1) spectrum generating group there alsocorresponded to di�erent types of singularities.We note that we analyzed the singularities of the generalized Coulomb{Sturm-ian equation (214) and its solutions (215), but similar considerations of thephysical potential (73) and its solutions can also be performed taking D =3 and l = 0. The algebraic construction, however, does not apply to thislatter problem. This is because the bound-state solutions (78) pick up extran-dependence through �n, which is not accessible for the ladder operatorsotherwise changing n as in equations (221) and (222).The present realization of the su(1,1) algebra is a special case of that describedin [12] in relation with the Natanzon con
uent potentials. Considering theCoulomb and harmonic oscillator limits discussed in subsection 3.1.1 and set-ting the dimension to D = 3, the generators reduce to the forms presented forthe two problems separately in [64]. We note that the spectrum generatingalgebra associated this way with the radial harmonic oscillator problem inthree dimensions is di�erent from the one-parameter realization of the su(1,1)algebra discussed in [69, C3], because the ladder operators there are lineardi�erential operators and the Hamiltonian is related to the Casimir invariant,while here the ladder operators are second-order di�erential operators and theHamiltonian is essentially a linear function of generator Ĵ3.3.4 PT symmetry of potentialsMy results for PT symmetric potentials are divided here into three main parts.First a class of potentials (mainly shape-invariant ones) are discussed, for whichPT symmetry can be implemented by applying an imaginary coordinate shift.Then the unusual features of PT symmetric potentials are illustrated withthe example of the Scarf II potential, �nally, examples are presented for morecomplicated situations, where the potentials have to be de�ned along bentcontours of the complex x plane in order to make them PT symmetric.77



3.4.1 Potentials generated by an imaginary coordinate shiftHere we apply the procedure outlined in subsection 2.1 to potentials withbound-state solutions containing hypergeometric and con
uent hypergeometricfunctions. It turns out that this method is especially suited to deriving the PTsymmetric versions of shape-invariant potentials, but also those of some moregeneral Natanzon-class potentials. The key element is choosing the otherwiseunimportant � coordinate shift in (10) as an imaginary constant and keepingC real [P9].First we apply the method to the Jacobi polynomials P (�;�)n (z) [19]. Modify-ing somewhat the parametrization used in (135) the actual form of (6) becomes[P9]E � V (x) = z000(x)2z0(x) � 34  z00(x)z0(x) !2 + (z0(x))21� z2(x)  n + �+ �2 ! n+ � + �2 + 1!+ (z0(x))2(1� z2(x))2 241�  � + �2 !2 �  �� �2 !235� 2z(x)(z0(x))2(1� z2(x))2  � + �2 ! �� �2 ! :(224)Note that in this parametrization � and � appear only in the (� + �)=2 and(�� �)=2 combinations.Let us consider �rst the PI case [10] de�ned by the di�erential equation(z0)2(1� z2)�1 = C (see table 1), which sets the third term on the right-handside of (224) to a constant. Rewriting the �rst two terms as the function of zand rearranging the equation we getE � V (x) = C  n+ � + � + 12 !2 + C1� z2(x) 2414 �  � + �2 !2 �  �� �2 !235� 2Cz(x)1� z2(x)  � + �2 ! �� �2 ! : (225)The z(x) functions are the solutions of the di�erential equation de�ning thePI case, and their general form is given by the actual version of (10):Z dz(1� z2)1=2 = C1=2x + � : (226)Depending on the nature of C (whether it is positive or negative) and that of z2(whether it is larger or smaller than 1), there are several solutions possible. In78



[10] �ve di�erent cases were identi�ed, labeled by z(x) = i sinh(ax), cosh(ax),cos(ax), cos(2ax) and cosh(2ax) for C = �a2, �a2, a2, 4a2 and �4a2. Thesecorrespond to the �ve PI type potentials listed in table 1. Also z(x) = sin(ax)is a solution, but it gives the same potential as z(x) = cos(ax), only shiftedwith �=a, therefore it was not considered as a separate solution in [10].Let us now examine how these z(x) functions behave under a PT trans-formation if we allow � 6= 0 in (226). The transformation properties of z(x)also determine those of E and V (x) in (225). It is easy to show that PT in-variance of the potential cannot be reached in general if � has a non-zero realcomponent, because then the �nite shift along the coordinate x renders V (x)and its PT transformed version to essentially di�erent forms. (There is an ex-ception for those cases when z(x) is a trigonometric function, because then thepotentials are periodic. However, if we consider these potentials only withina single period, then PT invariance is lost for these special cases too.) If weset � = i�, then the transformation properties of the z(x) functions speci�edpreviously are the following:PT : z(x) = i sinh(ax + i�) �! ~z(x) = i sinh(ax + i�) = z(x) ;PT : z(x) = cosh(ax + i�) �! ~z(x) = cosh(ax + i�) = z(x) ;PT : z(x) = cos(ax + i�) �! ~z(x) = cos(ax + i�) = z(x) ;PT : z(x) = sin(ax + i�) �! ~z(x) = � sin(ax + i�) = �z(x) : (227)The �rst three cases have been considered previously [10], while the fourthone has to be considered as a new independent possibility if we generalize ourstudy to PT symmetric quantum mechanics.The PT transformed version of (225) is~E � ~V (x) � E� � (V (�x))� == C  n+ �� + �� + 12 !2 � 2C~z(x)1� ~z2(x)  �� + ��2 ! �� � ��2 !+ C1� ~z2(x) 2414 �  �� + ��2 !2 �  �� � ��2 !235 : (228)(Remember that we chose C to be real.) It is clear from (225) and (228)that PT invariance of the potential is satis�ed for the ~z(x) = z(x) cases if(��)2 = �2 and (��)2 = �2 holds, i.e. for �� = �� and �� = ��. This canhappen if � and � are purely real or imaginary.When ~z(x) = �z(x) holds, then the change of the sign in the last term in(228) has to be compensated with the appropriate choice of � and �. Requiring79



Table 5: Conditions for having real and complex spectrum for PT symmetricshape-invariant potentials.Type V (x) Real-energy Complex-energyregular solutions regular solutionsPI � 2(�2+�2)�14 cosh2(x+i�) � i (�2��2) sinh(x+i�)2 cosh2(x+i�) �, � real � or � imaginary,� 6= �2 � k� � 6= �2 � k�2(�2+�2)�14 sinh2(x+i�) + (�2��2) cosh(x+i�)2 sinh2(x+i�) �, � real � or � imaginary,� 6= k� � 6= k�� 4�2�14 cosh2(x+ i2 �) + 4�2�14 sinh2(x+ i2 �) �, � real � or � imaginary,� 6= k� � 6= k�2(�2+�2)�14 sin2(x+i�) + (�2��2) cos(x+i�)2 sin2(x+i�) �, � real � and/or � imaginary� 6= 0 Im(� + �) 6= 0, � 6= 04�2�14 cos2(x+ i2 �) + 4�2�14 sin2(x+ i2 �) �, � real � and/or � imaginary� 6= 0 Im(� + �) 6= 0, � 6= 02(�2+�2)�14 cos2(x+i�) + (�2��2) sin(x+i�)2 cos2(x+i�) � = �� � = ��� imag.,� 6= 0 � 6= 0PII � s(s+1)cosh2(x+i�) � 2i� tanh(x + i�) s, � real no such solutions� 6= �2 � k�s(s+1)sinh2(x+i�) � 2i� coth(x + i�) s, � real no such solutions� 6= k�s(s+1)sin2(x+i�) � 2i� cot(x+ i�) s, � real s = �12 + i�,� 6= 0 � 6= 0s(s+1)cos2(x+i�) + 2i� tan(x+ i�) s, � real s = �12 + i�,� 6= 0 � 6= 0LI !24 (x+ i�)2 + (�2 � 14) 1(x+i�)2 � real � imaginary,� 6= 0 � 6= 0
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also PT invariance of the other potential term (which is an even function ofz(x)) restricts the parameters to (��)2 = �2, i.e. we get �� = ��. The �� = �choice leads to (� + �)� = � + �, and in this case the energy eigenvaluesremain unchanged and are purely real. The �� = �� choice also secures PTinvariance of the potential, however, in this case the energy eigenvalues mightbecome complex, due to (� + �)� = �(� + �).We listed the individual PI type potentials and the corresponding energyformulae in table 5, along with the conditions for PT invariance. For thesake of completeness we also displayed the z(x) = cosh(2ax + i�) and z(x) =cos(2ax + i�) options, which are not independent cases, rather they can beobtained from the z(x) = cosh(ax+i�) and z(x) = cos(ax+i�) cases by the a!2a replacement, using also formulae connecting hyperbolic and trigonometricfunctions with similar functions having half the original arguments. We alsoincluded in table 5 the z(x) = sin(ax+i�) case, which did not appear in [10] asan independent problem, because z(x) = cos(ax) could be trivially obtainedfrom z(x) = sin(ax) by a simple coordinate shift. As noted previously, realshifts of the coordinate are not compatible with PT invariance in general (e.g.� = i� is purely imaginary), therefore these two cases cannot be obtained fromeach other now, only if we de�ne the potentials to be periodic.The PI type potentials listed in table 5 are complex in general, due to the i�constant. If we set � = 0, the symmetric potential terms become real, while theodd ones turn purely imaginary. In fact, in this case the z(x) = cosh(ax + i0)and the z(x) = cos(ax+ i0) potentials become fully real for any allowed � and�. The remaining two cases, z(x) = i sinh(ax + i0) and z(x) = sin(ax + i0)present imaginary antisymmetric potential terms too.There are also further special values of � which deserve attention. It can beshown that the � = 0 version of the two hyperbolic PI type potentials can beobtained from the general z(x) = sinh(ax+ i�) and z(x) = cosh(ax+ i�) casesalike, when � is set to k� or �=2+ k�. This means that the two potentials canbe continuously transformed into each other by carefully tuning �.According to (8) the solutions of the Schr�odinger equation expressed interms of a Jacobi polynomial have the form (x) � (1� z(x))�2+ 14 (1 + z(x))�2+ 14P (�;�)n (z(x)) : (229)The regularity of these wavefunctions can be controlled by appropriate rela-tions for �, � and n, whenever jzj ! 1 or z = �1 can occur. For the caseof jzj ! 1 regular behaviour of  (x) can be guaranteed by the prescrip-tion n + [Re(� + �) + 1]=2 < 0. This condition sets an upper limit for n:n < �[Re(�+�)+1]=2. When z = 1 or z = �1 can occur, then the regularity81



of  (x) requires Re(�) > �1=2 and Re(�) > �1=2, respectively. Now let ussee which of these conditions apply to the individual PI type potentials listedin table 5.In the z(x) = i sinh(ax + i�) case only jzj ! 1 has to be taken care of,for x! �1. (We note that z = �1 can also occur here if sin(�) = �1 holds,because in this case z(x) ! � cosh(ax). Since this special case correspondsto a particular example for the next PI type potential, we do not consider ithere.) Then n < �[Re(� + �) + 1]=2 sets an upper limit for the number ofbound states. This condition also means that there are no bound states forthis potential if both � and � are imaginary. Special cases of this potentialwith � = 0 are mentioned in [83] (� = �� + 1, � = �� � 1, a = �) and [84](� = �b� A� 12 , � = b� A� 12 , a = 1).For z(x) = cosh(ax+i�) the n < �[Re(�+�)+1]=2 applies again, becausejzj ! 1 can occur. Now z = �1 can also appear, if cos(�) = �1. In thesecases a singularity appears in the potential at x = 0. (We note that thissingularity also appears for the conventional version of this potential, which isconsidered as a radial problem.) If we exclude these particular values of �, thenthe potential becomes �nite everywhere, and there are no further restrictionsfor the potential parameters. Similarly to the previous case, there are nobound states if both � and � are imaginary. The PT symmetric P�oschl{Tellerpotential discussed in [87] corresponds to this case, taking � = �A � 1=2,� = B � 1=2, C = �4, a = 1 and using �2� instead of �.In the trigonometric cases z(x) = cos(ax + i�) and z(x) = sin(ax + i�),jzj ! 1 cannot occur, therefore no conditions limit the possible values ofn. Furthermore, z = �1 can also occur for � = 0 only, in which case thesepotentials have singularities at ax = k�, and ax = (k + 12�), respectively,similarly to the conventional versions of these problems. Then the Re(�) >�1=2 and Re(�) > �1=2 conditions also have to be observed in both cases,and have to be combined with the other conditions for � and � required byPT symmetry.The regularization of the potentials by eliminating their singularities withappropriate choices of � relaxes the boundary conditions considerably. Thismeans that in principle, the second independent solution of the Schr�odingerequation (which is disquali�ed due to these boundary conditions for the con-ventional problems [143]) also becomes allowed. In fact, the general solution ofthe Schr�odinger equation can then be written in terms of two hypergeometricfunctions as (x) � (1� y) 12 (a+b�c)+ 14 �C1y 2c�14 F (a; b; c; y)82



+C2y 3�2c4 F (b� c+ 1; a� c+ 1; 2� c; y)� ; (230)where y = (1 � z(x))=2. The particular solution (229) can be obtained from(230) by setting C2 = 0, a = �n, b = n+�+�+1 and c = �+1, which reducesthe remaining hypergeometric function to a Jacobi polynomial. (See equation22.5.42 in [19].) As we shall see in subsection 3.4.2, the second solution doesnot introduce anything essentially new, rather it corresponds to changing � to��.Let us turn to the PII case [10] de�ned by the di�erential equation (z0)2(1�z2)�2 = C, in which case the fourth term on the right-hand side of (89) becomesa constant:E � V (x) = �2C  �+ �2 ! �� �2 ! z(x) � C 24 � + �2 !2 +  �� �2 !235+C  n + �+ �2 ! n+ � + �2 + 1! (1� z2(x)) : (231)With a parameter transformation the n-dependence can be transferred to theconstant (energy) term. The potential then can be written asV (x) = �Cs(s+ 1)(1� z2(x))� 2C�z(x) ; (232)where s = n + (�+�)2 or s = �n � (�+�)2 � 1 and � = ���2 �+�2 . This gives� = s�n+�=(s�n), � = s�n��=(s�n), or � = �s�n�1��=(s+n+1),� = �s � n � 1 + �=(s + n + 1). The energy eigenvalues are then given byE = �C �(s� n)2 + �2(s�n)2� or E = �C �(s+ n+ 1)2 + �2(s+n+1)2�. In order tosimplify the formalism, in what follows we consider only the �rst set of theabove relations: the second set can be obtained by the s! �s�1 substitution.The z(x) functions are again supplied by the current version of (10):Z dz1� z2 = C1=2x + � : (233)In [10] the � = 0 choice was made and three independent solutions were iden-ti�ed: z = tanh(ax), coth(ax) and �i cot(ax) with C = a2, a2 and �a2,respectively. One further solution, z = i tan(ax) with C = �a2 is essentiallythe same as the �i cot(ax) case, therefore it was not discussed as a separatepossibility.Considering the PT symmetric case, we again �nd that the � = i� choicehas to be made in order to reach PT invariance of the potentials. The transfor-mation properties of the four possible z(x) functions under the PT operation83



are the following:PT : z(x) = tanh(ax + i�) �! ~z(x) = � tanh(ax + i�) = �z(x) ;PT : z(x) = coth(ax+ i�) �! ~z(x) = � coth(ax + i�) = �z(x) ;PT : z(x) = �i cot(ax+ i�) �! ~z(x) = �i cot(ax + i�) = z(x) ;PT : z(x) = i tan(ax + i�) �! ~z(x) = i tan(ax + i�) = z(x) : (234)Similarly to the PI case, the last z(x) function can be obtained from the othertrigonometric one by using � = ��=(2a) + i� instead of � = i�. However, weagain considered it an independent case because �nite real translations arenot compatible with PT invariance in general. The PT transformed potential(232) becomes ~V (x) = �Cs�(s� + 1)(1� ~z2(x))� 2C��~z(x) (235)and the corresponding energy eigenvalues are ~E = �C �(s� � n)2 + (��)2(s��n)2�.For the ~z(x) = z(x) cases PT invariance is reached if (s(s+1))� = s(s+1) and�� = �. This means that � has to be real, while s is either real, or s = �12+i�.In the �rst case � and � are both real, and the energy eigenvalues are also real.When ~z(x) = �z(x), then for PT invariance we need (s(s + 1))� = s(s + 1)and �� = ��. In this case � has to be imaginary, while s can have the samevalues as in the previous case. If s is real, then �� = � holds, and the energyeigenvalues are real. The general form of the solutions is now (x) � (1� z(x))�2 (1 + z(x))�2P (�;�)n (z(x)) : (236)Table 5 contains the individual PII type potentials, the energy formulae,and the conditions for PT invariance. Their detailed analysis can be performedsimilarly to the procedure presented in the PI case: the PT symmetry of thepotential, the normalizability of the wavefunctions and the reality of the energyspectrum determine conditions for the potential parameters.For the generalized Laguerre polynomials L(�)n (z) [19] the current form of(6) becomes (71) [P9], and the corresponding solutions, according to (8) are (x) � (z0(x))� 12 (z(x))�+12 exp(�z(x)=2)L(�)n (z(x)) : (237)Picking the third term on the right-hand side of (71) as a constant and setting(z0)2z�1 = C we get the LI case [10]. Equation (71) can be rewritten asE � V (x) = C �n+ � + 12 �� C4 z(x) � C4z(x) ��+ 12���� 12� : (238)84



According to (10) the solution of the de�ning di�erential equation of z(x) isgiven by z(x) = C4 (x + ��)2 (239)with �� = �=C1=2. Again we �nd that only the �� = i� choice with real � canresult in a PT invariant potential and that the PT transform of z(x) isPT : z(x) = C4 (x+ i�)2 �! ~z(x) = �C4 (�x + i�)2�� = C4 (x+ i�)2 = z(x) :(240)The PT transform of (238) isE� � (V (�x))� = C �n+ �� + 12 �� C4 ~z(x)� C4~z(x) ��� + 12���� � 12� :(241)Comparing (238) and (241) we �nd that PT symmetry holds if (�2)� = �2 issatis�ed, i.e. if � is purely real or imaginary (�� = ��). In the former casethe energy eigenvalues will be real, despite the complex potential terms.By using (237) a particular solution of the corresponding Schr�odinger equa-tion is written as (x) � (z(x)) 2�+14 exp(�z(x)=2)L(�)n (z(x)) : (242)Since Re(z) > 0 for x ! 1 (and also for x ! �1), the solutions vanishasymptotically.In the conventional treatment of this problem [10] the �� = 0 choice wasmade in order to obtain a radial problem de�ned on the positive semi-axis.The C = 2! > 0 choice rendered the energy to be positive, and � = l +1=2 accounted for the centrifugal term. This means that the wavefunctionbehaves like xl+1 near the origin. Solutions which are non-zero at the originare not considered physical in the conventional case, when solutions only onthe positive semi-axis are taken into account. However, in the PT symmetriccase the singularity represented by the centrifugal barrier vanishes if � 6= 0holds, therefore the problem can (and should) be extended to the full x axis.In this case the general solution of the problem can be written in terms of twocon
uent hypergeometric functions [19], but similarly to the PI and PII casesit turns out that the second set of solutions are obtained from the �rst oneby the � ! �� replacement. This has been discussed in [86], where the PTsymmetric harmonic oscillator was introduced, and this possible double sign of� has been attributed to a \quasi-parity" quantum number. The parametersused there are related to the present ones via C = 4, �2�1=4 = G and � = �c.85



We note that this extension of the radial problem to the full line in the PTsymmetry context also contains the one-dimensional harmonic oscillator. Inthat case the centrifugal barrier does not appear, which corresponds to setting� to 1=2 and �1=2. The generalized Laguerre polynomials then reduce toHermite polynomials, which are odd and even, respectively, correspondingto the odd and even solutions of the one-dimensional problem. In the PTsymmetric context there is no point in discussing the Hermite polynomialsand the one-dimensional harmonic oscillator separately, as in [10] for ordinaryquantum mechanics.When we attempt to analyze the LII (Coulomb) and LIII (Morse) casesin the PT symmetric context by solving the di�erential equations (z0)2 =C and (z0)2z�2 = C (as in [10]), we arrive at limits of applicability of thepresent approach. Their nature is clearly visible from the form of the generalsolutions (237): the normalizability of the wave functions does not depend onthe powers of the various terms in (237) as for Jacobi polynomials, rather theboundary conditions are determined by the z(x) function itself, which appearsin an exponent. In particular, one should have z ! 1 for x ! �1 tosecure normalizability of the wavefunctions. This was guaranteed in the LI(harmonic oscillator case) by the form of z(x) in (239), but the correspondingsolutions in the Coulomb and the Morse cases, i.e. z(x) = C1=2x + � andz(x) = exp(C1=2x+ �) lead to in�nities at one limit. In conventional quantummechanics the latter two cases are considered as radial problems, therefore it isenough to have regularity of z(x) for x!1. A way around this problem canbe found if one replaces the linear integration path (x + i�) with curved ones.One possible way to �nd such curved integration paths is to apply a variabletransformation to the PT symmetric harmonic oscillator problem [86] to getPT symmetric Morse [91] and Coulomb [P8] potentials.A similar analysis was also made to derive conditions under which thesame potentials have complex energy eigenvalues [P13]. The results are alsodisplayed in table 5. In some cases the conditions regarding PT symmetry ofthe potential, normalizability of the eigenfunctions and the complex nature ofthe energy eigenvalues contradicted each other, so it turned out that certainpotentials cannot have normalizable states at complex energy eigenvalues. Theresults in [P13] agree with those of [144] for the harmonic oscillator, and containthe �ndings of [93] on the Scarf II potential as a special case, but besides thesethey were all new.A general feature of the shape-invariant potentials discussed here is thatthe functional form of the potentials depends on the squares of the potentialparameters which can take on imaginary values (i.e. �, �, i�), therefore the86



potentials are insensitive to the sign of this parameter. However, this signappears explicitly in the energy formulae as the sign of the imaginary com-ponent of the energy, thus the occurrence of complex conjugate energy pairsis a necessity. From the structure of the energy formulae it is apparent thatdepending on the potential parameters, the energy eigenvalues of these poten-tials are either all real or complex, so they practically do not occur togetherat the same time.It is worth noting that besides the shape-invariant case, the present methodalso works for some \implicit" potentials, such as the Ginocchio potential [13].As discussed in subsection 3.1.2, this is obtained by setting � = � in (224),reducing the Jacobi polynomial to an ultraspherical (or Gegenbauer) one [19],and considering (100) in (9) [C3]. It can be shown without deeper analysis thatthe Ginocchio potential can be made PT symmetric by the present method.In particular, the actual form of (10) becomes [C3]� 12 tanh�1 �z� 12 (� + 1� z2)� 12�+tan�1 �z(� + 1� z2)� 12� = C 12x+i� ; (243)and even this implicit functional form shows (e.g. via a series expansion)that the PT transform of z(x), ~z(x) � (z(�x))� = �z(x), therefore V (x), inwhich z(x) appears only through z2(x) (see also (102) and [C3]) must be PTinvariant. For potentials beyond the Natanzon class, one has to check eachcase individually. There the F (z) function can have more general forms, andit is not guaranteed that it satis�es a second-order di�erential equation as inour approach.Finally, we note that the imaginary coordinate shift can be interpreted asa Hermitian linear automorphism de�ning �-pseudo-Hermiticity. In this case� = exp(�p), where p is the momentum operator p = �i ddx , and ��1V (x)� =V (x + i�) readily follows [145].3.4.2 An illustration: the PT symmetric Scarf II potentialHere we consider the PT symmetric Scarf II potential to illustrate the unusualfeatures of PT symmetry [P16], including the case of unbroken and sponta-neously broken PT symmetry, the appearance of the quasi-parity quantumnumber q associated with the richer bound-state energy spectrum, the mod-i�ed inner product and the pseudo-norm derived from it, which is known tohave inde�nite sign.The PT symmetric Scarf II potential occupies a special position amongPT symmetric shape-invariant potentials. It is de�ned on the whole x axis, it87



has no singularity at x = 0, and in contrast with most other shape-invariantpotentials, it can be turned into a PT symmetric form without regularizingits singularity by means of an x! x+ i� imaginary coordinate shift [P9, 145].Therefore it is not surprizing that it became a \guinea pig" of testing PTsymmetry on a solvable example. It has been associated with the sl(2,C)[146], su(1,1)'so(2,1) [P10] and so(2,2) [P15] potential algebras, and it hasalso been observed that its PT symmetric version has a second set of boundstates, which appear as resonances in its Hermitian version [146, P10]. Thismechanism of doubling the bound states is essentially di�erent from the onearising from the cancellation of singularities at x = 0 by the imaginary coor-dinate shift. This potential is also known to have (purely) real and (purely)complex energy spectrum, depending on the relative strength of its real andimaginary component [93], and since the two domains can be connected witha continuous tuning of the parameters without crossing a singularity, it is aperfect example to illustrate the breakdown of PT symmetry.Here we follow the notation applied throughout the present subsection andalso used in [P9, P13, P16] to discuss the Scarf II potentialV (x) = � 1cosh2(x) 24 �+ �2 !2 +  �� �2 !2 � 1435+2i sinh(x)cosh2(x)  � + �2 ! � � �2 ! :(244)The bound-state energy eigenvalues areE(�;�)n = � n + � + � + 12 !2 ; (245)while the corresponding wavefunctions (�;�)n (x) = C(�;�)n (1� i sinh(x))�2+ 14 (1 + i sinh(x))�2+ 14P (�;�)n (i sinh(x)) (246)are expressed in terms of Jacobi polynomials [19] and are normalizable if n <�[Re(�+ �) + 1]=2 holds.In the Hermitian case � and � are complex and satisfy �� = �: � =�s� 12 � i�, � = �s� 12 + i� [147, 10]. In this case only one regular solutionexists. It is obvious that with arbitrary � and � the general complex versionof the Scarf II potential is obtained.As discussed previously [P9, P13], the Scarf II potential can be made PTsymmetric if �� = �� and �� = �� holds [P9], i.e. if � and � are both eitherreal or imaginary. In order to have real energy eigenvalues both � and � haveto be real, while to have complex bound state spectrum, i.e. in the case of88



spontaneous breakdown of PT symmetry one of them has to take an imaginaryvalue [P13]. If both � and � are imaginary, then there are no bound states.Here we assume that � is real, and � can be real or imaginary, dependingon whether the PT symmetry is unbroken or broken. This choice does notrestrict the generality of the problem, since the roles of � and � can easily bereversed, due to the properties of the Jacobi polynomials [19].For the Scarf II potential the breakdown of PT symmetry takes placewhen the strength of the imaginary potential component exceeds a certainlimit depending on the strength of the real potential component, as describedin [93]. This condition corresponds exactly to taking imaginary values for �instead of real ones (see e.g. [P13] for the details), so a smooth transition overthe critical point can be achieved by moving � to zero along the real axis andthen continuing along the imaginary axis.In the PT symmetric case there are two sets of normalizable solutions[P9, 146, P10], which carry the upper indexes (�; �) and (��; �) in (246).Obviously, (244) is not sensitive to the + or� sign of �. In the notation of [148]the two solutions corresponds to quasi-parity q = +1 and �1. In what follows,therefore, � can implicitly be replaced with q�. This sign di�erence resultsin two distinct energy eigenvalues in (245), which form a complex conjugatepair when � is imaginary, i.e. in the case of broken PT symmetry. In thiscase the PT operation transforms the two solutions into each other, while inthe unbroken symmetry case the two solutions are eigenfunctions of the PToperator.In what follows we are going to evaluate integrals containing the standardand PT symmetric inner product of wavefunctions of the type  (��;�)n (x) (246).Let us consider the PT symmetric inner product [95, 96] of two solutions ofthe type (246) I(�;�;�)nl = Z 1�1  (�;�)n (x)[ (�;�)l (�x)]�dx : (247)According to our choice, � is real and � can be ��, depending on whether wecalculate the PT symmetric inner product of states with the same or di�erentquasi-parities (� = � and � = ��, respectively), furthermore, � can be real orimaginary, depending on whether the PT symmetry is unbroken or broken.Without presenting the technical details [P16], we just state the resultI(�;�;�)nl = C(�;�)n [C(�;�)l ]�(�1)nQ(�;�;�;�)nl ; (248)which can be evaluated as the special case ofQ(�;�;
;�)nl = (�1)n+l2�+�+
�+��2 +2 sin[�(� + ��)=2] sin[�(� + 
�)]sin[�(� + � + 
� + ��)=2)]89



� nXm=0(�1)m  n+ �m ! n + �n�m ! lXm0=0(�1)m0  l + 
�m0 ! l + ��l �m0 !��(�+��2 + n�m+m0 + 1)�(�+
�2 + l +m�m0 + 1)�(�+�+
�+��2 + n+ l + 2) : (249)with 
 = �. This closed formula can be obtained in a multistep way bysubstituting in (246) the explicit expressionP (�;�)n (i sinh(x)) = 12n nXm=0 n + �m ! n+ �n�m !�(�1)n�m(1� i sinh(x))n�m(1 + i sinh(x))m ; (250)then evaluating the integrals of the typeA(s;t)i � Z 1�1(1� i sinhx)s(1 + i sinhx)t(sinh x)idx i = 0; 1 ; (251)and �nally calculating the double sum for the running indices. As discussed in[P16], the complicated expression of binomial coe�cients reduces signi�cantlywhenever �� = � and 
� = � holds, and this actually happens not only for thecase of the PT symmetric inner product, but also for the usual one, in case ofthe Hermitian Scarf II potential.Equation (248) together with (249) has signi�cant implications regardingthe PT symmetric inner product (247). First note that whenever � = ���holds, the integral vanishes due to the presence of the sin[�(� + ��)] term in(249). This corresponds to either � = � with imaginary �, i.e. the inner prod-uct of wavefunctions of the same type (same quasi-parity) in the broken PTsymmetry case, or � = �� with real �, i.e. the inner product of two di�er-ent type (di�erent quasi-parity) wavefunctions in the unbroken PT symmetrycase. So we can conclude that the two states are orthogonal in these situations.Let us consider the cases when � 6= ���. The �rst case is � = � with real� (unbroken PT symmetry). With this choice (and remembering that � isreal) we getI(�;�;�)nl = �nljC(�;�)n j2 2�+�+2� + � + 2n + 1 sin(��) sin(��)sin[�(�+ �)]� �+ � + 2nn + � !�1  �+ � + 2nn ! : (252)This proves directly the orthogonality of the states of the same type (i.e. thosewith the same quasi-parity) for n 6= l when the PT symmetry is unbroken,and gives a closed formula for the pseudonorm for n = l.90



Previously this pseudonorm was known only for the ground state n = 0 [148],while the orthogonality of the eigenfunctions was proven only indirectly [96,93]. This latter proof rests on the equation(En �E�l ) Z 1�1  n(x) �l (�x)dx = 0 ; (253)which is the equivalent of the equation proving the real nature of the energyeigenvalues for Hermitan systems. In the case of unbroken PT symmetry Enand El are real and they are not equal, consequently the integral in (253) hasto vanish.The only remaining case is � = �� with imaginary �, when �� = � holdsagain. This case gives us the overlap of eigenstates belonging to di�erentquasi-parity in the broken PT symmetry case. It turns out that the I(�;�;��)nloverlap has the same form as (252), except that jC(�;�)n j2 has to be replacedwith C(�;�)n [C(��;�)l ]�.Let us summarize the results for the di�erent cases [P16].� Unbroken PT symmetry (� real), same quasi-parities: I(�;�;�)nl is diagonalin n and l, as seen from (252). To extract more information, we canrewrite equation (252) in a somewhat di�erent form, after eliminating thesine functions from the formulae by combining them with some gammafunctions via �(x)�(1� x) = �= sin�x:I(�;�;�)nl = �nl(�1)n�jC(�;�)n j2 2�+�+2(�� � � � 2n� 1)n! �(��� � � n)�(�� � n)�(�� � n) :(254)Due to the condition for having bound states, i.e. n < �[Re(�)+�+1]=2,if � is real, every term in (254) is positive, except (�1)n which alternates,and [�(��� n)�(�� � n)]�1, which is real, but its sign depends on therelative magnitude of �, � and n. Except for extreme values of � and �the argument of the two gamma functions is positive for the �rst few n's,so then the alternating (�1)n factor determines the sign of the pseudo-norm, but as n reaches �� and/or ��, this regular pattern changes. Theresults concerning this case are new, except for n = 0.� Unbroken PT symmetry (� real), di�erent quasi-parities: I(�;�;��)nl = 0,due to sin �(� � ��) = 0 in (249). This was already proven thoughindirectly by (253) [96, 93]. 91



� Broken PT symmetry (� imaginary), same quasi-parities: I(�;�;�)nl = 0,due to sin �(� � ��) = 0 in (249). This was already proven thoughindirectly by (253) [96, 93].� Broken PT symmetry (� imaginary), di�erent quasi-parities: I(�;�;��)nlis diagonal in n and l, as seen from (252). But in this case it seemsthat for n = l there can be two di�erent wavefunctions which are notorthogonal, in general. Equation (254) holds for this case too, except fora change in the term containing the normalization constants, as discussedbefore. This non-orthogonality of two di�erent states is a new feature ofPT symmetric problems, which in this case appears only when the PTsymmetry is broken. This unusual new result seems to be supported by(253): when the PT symmetry is broken, the energies of the two stateswith the same principal quantum number n but with di�erent quasi-parity are complex conjugate to each other, so the zero value of (253) issecured by the energy term, and the integral need not be zero.This completes the analysis of the possible integrals of the type (247).For the sake of completeness we also present a side product of our calculations:the normalization coe�cients calculated for the bound-state wavefunctions ofthe Hermitian Scarf II potential. These can be determined fromZ 1�1  (�;�)n (x)[ (�;�)l (x)]�dx = C(�;�)n [C(�;�)l ]�Q(�;�;�;�)nl ; (255)because in this case �� = � also simpli�es the summation in (249), and we�nd thatC(�;�)n = 2��+�2 �1 ��(��� n)�(�� � n)(��� � � 2n� 1)n!�(��� � � n)� �1=2 : (256)These normalization coe�cients have not been known previously due to theinvolved mathematics [147, 93].Finally, we note that an expression similar to (159) connecting the imaginarycomponent of the potential with that of the energy can also be evaluated forthe sake of tracing the mechanism of the spontaneous breaking of the PTsymmetry as � is moved from real to imaginary values through � = 0. Un-fortunately, in this case the double sums in (249) remain rather complicated,nevertheless, the integrals can be evaluated for the �rst few states, and weindeed get Im(E(�;�)n ) = i8(�� ��)(�+ �� + 2� + 4n+ 2) ; (257)as expected from (245). 92



We also mention a mathematical \byproduct" of the present calculations,i.e. a formula missing from the standard compilations [149]:nXk=0(�1)k  nk ! a�m� kn�m ! b+m + km ! = (�1)m  nm ! ; (258)which can be proven by recursion. The interesting feature of this result is thatthe right-hand side is independent of a and b.Besides the bound states, the scattering states have also been analyzedfor the Scarf II potential, and the transmission and re
ection coe�cients havebeen determined [P10]. In this analysis the more general version of the Scarf IIpotential was considered, with the x! x+ i� imaginary coordinate shift. Thetransmission and re
ection coe�cients of the Scarf II potential were found tobe T (k; �; �) = �(12(� + � + 1)� ik)�(�12(� + � � 1)� ik)�(�ik)�(1� ik)�2(12 � ik)��(12(� � �+ 1)� ik)�(12(�� � + 1)� ik) ; (259)R(k; ��) = i exp(2�k) cos(�2 (� + � + 1)) sin(�2 (�� �))cosh(�k)�sin(�2 (� + � + 1)) cos(�2 (�� �))sinh(�k) !T (k; �; �) : (260)These equations contain both the Hermitian case with � = 0 and � = �� =�s� 12 � i� [P10, 147], and the PT symmetric one with unbroken (� real) orspontaneously broken (� imaginary). It is remarkable that the imaginary shifta�ects only the re
ection coe�cient (260). This exponential factor clearlyshows that the jT j2 + jRj2 = 1 relation breaks down in the PT symmetriccase, which is not surprizing if we recall that we have complex potentials inthis case, in which the 
ux is not conserved. We note that although theextra exp(2�k) factor increases the modulus of the re
ection amplitude (260)if �k > 0, it remains �nite as long as � < �=2. Since cosh(x + i�2 ) = i sinh(x),for this particular value of � the potential becomes [P9] a singular (generalizedP�oschl{Teller) potential, and equations (259) and (260) do not apply.3.4.3 Other types of PT symmetric potentialsA large number of PT symmetric potentials have to be de�ned along bent con-tours of the complex x plane in order to generate normalizable solutions. This93



was the case with the �rst examples of PT symmetric potentials [89] whichwere found numerically, but there are also exactly solvable potentials with thisproperty. It is not surprizing that de�ning potentials on bent contours of the xplane introduces further exotic features of PT symmetric potentials, makingthem more interesting for mathematical, rather than physical investigations,nevertheless, here we mention some examples for the sake of completeness.As we have seen in subsection 3.4.1, the imaginary coordinate shift failedto turn the Morse and the Coulomb potentials into PT symmetric problems,because the solutions were not normalizable along the x+i� line. This transfor-mation, actually, takes the Morse potential into a non-PT -symmetric problem,which, however, has real energy eigenvalues [146, 145]. Alternatively, its PTsymmetric version has to be de�ned along a bent contour [91]. The situationis similar for the PT symetric Coulomb potential too, which can most conve-niently introduced by applying a variable transformation to the PT symmetricharmonic oscillator [86]. The Liouvillean method [118] (or the point canonicaltransformation [117]) presented in subsection 3.1.3 o�ers a convenient frame-work for this. This operation can also be recognized as the PT symmetricKustaanheimo{Steifel transformation [P8].We start with establishing the notation for the PT symmetric harmonicoscillator, introducing also explicitly the quasi-parity quantum number. (Seesubsection 3.4.1 and [86].) The potential is de�ned as in table 5, except thatfor simplicity we put ! = 2. Then the energy eigenvalues are E(n;q) = 4n +2� 2 q�, now exhibiting the q quantum number too, while the correspondingnormalizable eigenfunctions can be written (see also (242)) as (n;q)(r) = N r1=2�q � e�r2=2 L(�q �)n (r2) ; (261)where the integration path r = x+ i� is a straight line. For � < 0 it lies in thelower half of the complex plane.In the spirit of the Kustaanheimo{Steifel mapping of harmonic oscillatorson Coulombic bound states we now have to de�ne a complex variable t as a re-scaled square of r(x) such that the resulting path t(x) remains PT invariant.In the PT symmetric setting this mapping is [P8]r2 = �2 i �2t ; (262)where � = �n > 0 depends on the individual state. This maps the straightline r(x) = x+ i� upon the curve t(x) = u+ iv, where u = u(x) = �x�=�2 andv = v(x) = (x2� �2)=(2�2), so for � < 0 it forms an upwards-oriented parabolav = ��2=(2�2) + u2�2=(2�2) in the complex plane.94



Having achieved a PT symmetry in the complex plane of t, we may moveto the (trivial) insertions and conclude that all the above-mentioned harmonicoscillator bound-state solutions are in a one-to-one correspondence with thesolutions of the Coulombic Schr�odinger equation � d2dt2 + �2 � 14t2 + iZ e2t !	(t) = E	(t) : (263)As in the conventional case, � becomes n� and q�dependent, �2(n;q) = Ze2=(2n+1� q�), so the Coulombic solutions take the form	(n;q)(t) =M t(1�q�)=2 exp(i �2(n;q)t)L(�q�)n (�2i�2(n;q)t) ; (264)and their energy spectrum is speci�ed by the elementary formulaE(n;q) = �4(n;q) = Z2e4(2n+ 1� q�)2 q = �1; n = 0; 1; : : : : (265)One immediately notices the peculiarities of the PT symmetric Coulombproblem. First, the charge is replaced by an imaginary quantity, and conse-quently, the energy eigenvalues are positive, rather than negative. As for otherPT symmetric potentials, there are now two sets of levels, and the energy ofsome q = �1 states can even become divergent for n = 2�� 1=2 [P8].This transformation can also be used to generate non-shape-invariant po-tentials too, similarly to the Hermitian case. In particular, the transformationdiscussed in subsection 3.1.3, i.e. the one taking the Eckart potential into theNatanzon type V (DKV )(x)1 in (120) can also be implemented in the PT sym-metric setting [P12]. Without presenting the details, we just state the mainresults. To repeat the procedure in subsection 3.1.3 one again considers �rstthe original PT symmetric (Eckart) potential de�ned on the straight x + i�line of the complex x plane, and then transforms this into a bent trajectoryby substituting it into the function de�ning the variable transformation. Thisis now de�ned implicitly by sinh(x+ i�) = �iei�, leading toV (�) = 34(1� e)2i� + 2i�(1� e2i�)1=2 � C1� e2i� ; (266)which is the PT symmetric version of the V (DKV )1 (x) potential discussed insubsection 3.1.3. Similarly to the Hermitian case, the energy eigenvalues areagain determined by a cubic formula for n, however, it turns out that in thePT symmetric setting there are two real roots leading to normalizable solu-tions [P12]. This is in accordance with the general observation concerning PT95



symmetric potentials, i.e. that the energy spectrum becomes richer (developsa second set of normalizable states), mainly due to the less strict boundaryconditions.Finally, we brie
y mention another type of solvable potential which for-mally does not belong to the Natanzon class, but it illustrates the mechanismof spontaneous PT symmetry breaking. This is the PT symmetric square wellpotential de�ned on a �nite interval, say x 2 (�1; 1) asV (x) = � iY x < 0�iY x > 0. (267)where Y is a real constant. It is de�ned together with the boundary conditions (�1) = 0 [150, P14]. In [150] the case of unbroken PT symmetry wasconsidered, when the energy eigenvalues are real. It was found that this holdsuntil a critical value of Y , where the �rst two levels \merge and disappear".However, it can be shown that E0 and E1 simply become the complex adjointof each other [P14], in accordance with the mechanism of the spontaneousbreaking of PT symmetry.Without presenting the details here we only sketch the main elements ofthe analysis in [P14]. First  0(x) and  1(x) are written in the form of hy-perbolic functions as  � a cosh kx + b sinh kx, and then the wave number ismatched to the (complex) energies E and Y . Then the boundary conditionsare implemented through the logarithmic derivative of the solutions, and thisultimately leads to a (complex) transcendental equation� coth �+ �� coth �� = 0 ; (268)where �2 = �e� i"� iY and �2 = �e+i"� iY , and E = e� i" are the complexconjugated energy eigenvalues E0 and E1. The transcendental equation can besolved graphically, and one �nds that the energies E1 and E2 become complex(i.e. complex conjugates of each other) when Y reaches the dritical valueYcrit � 4:475 [P14]. A second critical value was also found near 12.80155.This means that the energy eigenvalues turn into complex pairs at di�erentcritical coupling constants, which is di�erent from what we have seen for thePT symmetric shape-invariant potentials in subsections 3.4.1 and 3.4.2. Thereall the energies turned into complex pairs at the same coupling parameters,so the spontaneous breakdown of PT symmetry took place in a single step,rather than continuously.
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3.5 The interrelation of the three symmetry conceptsThe unusual features related to the PT symmetry of quantum mechanicalpotentials naturally raise the question how other symmetries of the same po-tentials are a�ected by PT symmetry. We are particularly interested in con-structions based on supersymmetric quantum mechanics (SUSYQM) [3, 4] andLie algebras. The doubling of the basis states due to q = �1 implies that thesuperpotential also has to carry the quasi-parity quantum number, and alsothat some algebras associated with the basis states of conventional potentialshave to be enlarged.PT symmetry and supersymmetryLet us modify the standard SUSYQM formalism by adding the q quasi-parity quantum number to the SUSYQM shift operatorsA(q) = ddx +W (q)(x) Ay(q) = � ddx +W (q)(x) (269)through the superpotential W (q)(x) = � ddx ln (q)0;�(x), where  (q)n;�(x) is then'th normalizable wavefunction with quasi-parity q [P17, C4]. Substitutingdirectly A(q) and Ay(q) in the factorized form of the Hamiltonian, the twosets of solutions would belong to two potentials shifted with respect to eachother with an energy constant, because the ground-state energies E(�q)0;� wouldbe zero for q = 1 and �1 alike, by construction [3, 4]. In order to avoidthis, let us write the \bosonic" Hamiltonian in the factorized form H� =Ay(q)A(q) + "(q) = Ay(�q)A(�q) + "(�q), containing the q-dependent factorizationenergies "(�q) = E(�q)0;� . Then H� becomes independent of q, and its eigenvalueequation takes the formH� (q)n;� = [Ay(�q)A(�q) + "(�q)] (q)n;� = E(q)n;� (q)n;� : (270)The \fermionic" partner Hamiltonians H(�q)+ , however, will depend on q:H(�q)+  (q)n;+ = [A(�q)Ay(�q) + "(�q)] (q)n;+ = E(q)n;+ (q)n;+ : (271)With equations (270) and (271) one can easily prove the A(�q) (q)n;� functionsare eigenfunctions of the H(�q)+ \fermionic" Hamiltonians, and the correspond-ing energy eigenvalues are the same as those of the q-independent \bosonic"Hamiltonian: H(q)+ A(q) (q)n;� = E(q)n;�A(q) (q)n;� ; (272)H(�q)+ A(�q) (q)n;� = E(q)n;�A(�q) (q)n;� : (273)97
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Figure 6: Schematic illustration of the relation between the spectra of the\bosonic" Hamiltonian H� and its two \fermionic" partners H(q)+ and H(�q)+ .The energy scale and the relative spacing of the energy levels is arbitrary.However, there is a di�erence between (272) and (273) that in the formercase A(q) (q)n;� = 0 holds by construction, so the partner of the ground-state\bosonic" level is missing from the spectrum of H(q)+ [3, 4], while the situationis di�erent for (273), so there the number of levels is the same in the \bosonic"and \fermionic" Hamiltonians. The situation is schematically illustrated on�gure 6.We illustrate this procedure with the example of the Scarf II potential(244), considering it the \bosonic" potential. Then the superpotential is [P17]W (q)(x) = �12(q�+ � + 1) tanhx� i2(� � q�)sechx ; (274)which generates (244) as the \bosonic" potential V�(x), provided that the thefactorization energies are "(q) = �14(q� + � + 1)2. The \fermionic" partner98



potentials then take the form [C4]V (q)+ (x) = � 1cosh2 x 24 q�+ � + 22 !2 +  q�� �2 !2 � 1435+2i sinhxcosh2 x  � + q�+ 22 ! � � q�2 ! : (275)The results obtained for the Scarf II potential have signi�cantly di�erentimplications for unbroken and broken PT symmetry, corresponding to real andimaginary values of � [P17, C4]. In the former case the \fermionic" partnerpotentials (275) are PT symmetric, and the energy eigenvalues remain real.In the latter case, however, the coupling parameters of both the even and oddcomponent of the potential become complex due to the imaginary value of �,therefore the \fermionic" potentials cease to be PT symmetric.We note that a similar system of partner potentials has been obtained [151]from two essentially di�erent supersymmetric constructions; i.e. the para-supersymmetric scheme (where a three- rather than two-dimensional matrixrepresentation is used) and second-order supersymmetry (where A and Ay in(269) are second- rather than �rst-order di�erential operators).As a further combination of PT symmetry and supersymmetry we mentiona realization of the N = 2 SUSYQM algebra (17) in which the supersym-metric charge and shift operators contain the time re
ection (i.e., complexconjugation) operator T in the form [152]eQ =  0 0T A(q) 0 ! eQy =  0 Ay(q)T0 0 ! : (276)Consequently, the SUSY Hamiltonian is di�erent in its \fermionic" componenteH =  eH(q)� 00 eH(q)+ ! �  Ay(q)A(q) 00 T A(q)Ay(q)T ! : (277)This indicates that the \bosonic" component of the modi�ed Hamiltonian isthe same as in the original case, eH(q)� = H(q)� , while the \fermionic" compo-nent of the modi�ed Hamiltonian coincides with the complex conjugate of theoriginal \fermionic" Hamiltonian eH(q)+ = T H(q)+ T . By introducing the shiftedenergy scale as in (270) and (271) these relations become eH� = H� andeH(q)+ = TH(q)+ T + ["(q)]�. For unbroken PT symmetry of H�, i.e. when theenergy eigenvalues are real and consequently "(q) is also real, this means that99



the energy eigenvalues of eH(q)+ are also real, while for spontaneously brokenPT symmetry, when the energy eigenvalues and "(q) are complex, the energyeigenvalues of eH(q)+ are the complex conjugates of the eigenvalues of H(q)+ . Theeigenfunctions are equally trivially related to the original \fermionic" eigen-functions in both cases.Furthermore, the PT invariance leads to a special relation between the P andT operations themselves. If H(q)+ is PT symmetric, then the complex conju-gation operation has the same e�ect on it as the P spatial re
exion operation,so eH(q)+ contains the spatially re
ected potential appearing in H(q)+ , so themodi�ed SUSY construction does not di�er essentially from the usual one. Asimilar relation holds between the eigenfunctions, if they are eigenfunctions ofthe PT operator, i.e. if the PT symmetry is unbroken. The energy eigenval-ues of eH(q)+ are real and the same as those of H(q)+ , as we have seen above. Inthe case of spontaneously broken PT symmetry the situation is di�erent sincethe eigenfunctions are not invariant under the PT operation anymore. Theenergy eigenvalues remain the same since the complex conjugate pairs simplytransform into themselves under complex conjugation. However, in the caseof the spontaneously broken PT symmetry, the PT invariance of eH� = H(q)�need not lead to the PT invariance of eH(q)+ as we have seen on the example ofthe Scarf II potential [P17].PT symmetry and potential algebrasLet us now turn to the algebraic framework to describe PT symmetricpotentials. In particular, we investigate potential algebras (discussed in sub-section (2.3), the ladder operators of which connect degenerate states of po-tentials with di�erent depth, but of the same type. In the Hermitian case thepractical equivalence of the SUSYQM construction and the one based on ansu(1,1) (or su(2)) potential algebra has been demonstrated [69] for B and Aclass shape-invariant potentials, which contain the Morse potential and variousScarf and P�oschl{Teller potentials. We focus on the PT symmetric versionsof type A (or PI class) potentials.Our �rst results concerned the construction of an su(1,1)'so(2,1) algebrarelated to the Scarf II potential (244) [P10]. It turned out that similarly tothe Hermitian case, the normalizable states of this potential supply a basisfor the irreducible representations of the SU(1,1) potential group. A majordi�erence, however, is the presence of the second set of normalizable solutionsdue to the q quasi-parity quantum number, which indicated that a secondsu(1,1)'so(2,1) algebra is required for the complete description of the problem.In the Hermitian case the second set of solutions corresponded to resonance100



states with complex energy, and can be associated with �nite dimensionalnon-unitary irreducible representations of SU(1,1) [59]. These states can beidenti�ed with the poles of the transmission amplitude (259) with k = � i2(���) � i(n + 12) [P10]. In the PT symmetric case these states turn into boundstates in the sense that their energy eigenvalues become real, unless the PTsymmetry is broken spontaneously (i.e. � becomes imaginary rather than real).Note that in the latter situation both sets of normalizable states have complexenergy eigenvalues, the energies of which are complex conjugates of each other.In group theoretical terms this means that the nature of the SU(1,1) irreduciblerepresentations also changes when one goes from the Hermitian case to the PTsymmetric one, and also when PT symmetry is spontaneously broken. Wenote that the Scarf II potential has also been analyzed in terms of the complexsl(2,C) algebra [146, 153].Based on the �rst �ndings we performed a systematic study of the so(2,2)� so(2,1)�so(2,1) algebra associated with PI type potentials, with specialattention to their PT symmetric versions [P15]. For this we considered thedi�erential realization of the so(2,2) algebra[Jz; J�] = �J� [J+; J�] = �2aJz ; [Ji; Kj] = 0 (278)[Kz; K�] = �K� [K+; K�] = �2bKz ; i; j = +; �; z ; (279)which also includes the so(4) and so(3,1) algebras for a = b = �1 and a =�b = �1, respectively. We parametrized the generators as [P15]J� = e�i�  �h1(x) @@x � g1(x) + f1(x)Jz + c1(x) + k1(x)Kz! ; (280)Jz = �i @@� (281)and K� = e�i�  �h2(x) @@x � g2(x) + f2(x)Jz + c2(x) + k2(x)Kz! ; (282)Kz = �i @@� : (283)and found that the algebra de�ned in (278) and (279) is obtained if the fol-lowing relations hold:k22 � h2k02 = b h2f 02 � f2k2 = 0 k22 � f 22 = b ; (284)101



c1 = c2 = 0 ; (285)h1 = Ah2 f1 = Ak2 k1 = Af2 g1 = Ag2 ; (286)A2 = ab = �1 : (287)Here we have assumed that hi(x) 6= 0, ki 6= 0 and fi 6= 0 holds. For hi(x) = 0the di�erential term with respect to x would be cancelled in J� (280) andK� (282), while fi(x) = ki(x) = 0 would contradict (284). We also notethat from the three equations in (284) only two are independent and thatthe choice of h2(x) determines f2(x) and k2(x) immediately. However h2(x)does not determine g2(x), so there are two independent functions de�ning thisconstruction.The Casimir invariantC(JK)2 = 2C(J)2 +2C(K)2 � 2 ��aJ+J� + J2z � Jz � bK+K� +K2z �Kz� (288)is a second-order di�erential operatorC(JK)2 	 = 4bh22	00 + 4bh2(h02 + 2g2 � k2)	0 + [4b(h2g02 + g22 � k2g2)+2(1� bk22 � bf 22 )(J2z +K2z )� 8bf2k2JzKz]	: (289)The eigenfunctions of C(JK)2 , which are also the eigenfunctions of Jz and Kzare 	 � 	(x; �; �) = ei(m�+m0�) (x). Here  (x) is the physical wavefunc-tion depending on the coordinate x, while � and � are auxiliary variables,which are multiplied with m and m0, the eigenvalues of generators Jz and Kz,respectively.Since the above algebras are of rank 2, they admit a second Casimir in-variant, which can be written as the di�erence of the two SO(2,1) Casimirinvariants in (288) ~C(JK)2 = 2C(J)2 � 2C(K)2 : (290)It turns out that the eigenvalue of this operator is always zero for the presentdi�erential realization of the algebra, irrespective of a and b. Therefore, wehave generated the symmetric irreducible representation of so(2,2) (or so(4))[73], usually labelled as (!; 0), where ! is the quantum number de�ning theeigenvalue of the �rst Casimir invariantC(JK)2 	 = !(! + 2)	: (291)! is connected with the eigenvalue j(j + 1) of the Casimir invariant of so(2,1)(or so(3)) by the relation ! = 2j. Of course, a simple formal transition from an102



so(2,1) algebra to an so(3) algebra can be made by multiplying the hi, gi, fi,ki, ci (i = 1, 2) functions with the imaginary unit i. This exactly correspondsto the changes a! �1 and b! �1. It also turned out from the constructionthat only the a = b = �1 choice leads to solvable potentials, therefore in thisscheme only the so(2,2) and so(4) algebras can be obtained, but not so(3,1)[P15]. This is a constructive proof of an assumption used in [72, 73].Following the method presented in subsection 2.3 for the su(1,1) algebra,the Schr�odinger equation can be obtained from the egeinvalue equation of theCasimir invariant in case the linear derivative term is eliminated with the extraconstraint g2 = 12(k2 � h02) : (292)With this choice we getC(JK)2 	 = 4bh22	00 + [b((h02)2 + k22 � 2h002h2)� 2+4(1� bk22)(J2z +K2z )� 8bf2k2JzKz]	= !(! + 2)	 : (293)A Schr�odinger-type di�erential equation can be obtained from (293) if h2 isa constant. Similarly to the su(1,1) case (see [69] and subsection 2.3), thischoice de�nes the so(2,2) algebra as a potential algebra, with generators lad-dering between degenerate states of potentials with di�erent parameters butsimilar shape. In [P15] all members of the PI potential class (see table 1) werediscussed in terms of the so(2,2) (or so(4)) potential algebra.The ladder operators of the so(2,2) potential algebra associated Scarf IIpotential are J� = e�i�  � @@x � tanh x(Jz � 12) + icosh xKz! ; (294)K� = e�i�  � @@x � tanh x(Kz � 12) + icosh xJz! : (295)The m and m0 labels are expressed in terms of the potential parameters asm = �(�+ �)=2 and m0 = (� � �)=2. The ladder operators shift these valueswith one unit, which corresponds to changing � and � in a correlated way[P15].The PT symmetric versions of the remaining PI class potentials were alsoderived in a similar way [P15], implementing also the imaginary coordinate103



shift discussed in subsection 3.4.1. It was also found that the so(2,2) generatorstransform under the PT operation in a characteristic way:PT (J=K)�(PT )�1 = (J=K)� ; PT (J=K)z(PT )�1 = �(J=K)z : (296)As it can be seen from (294) and (295), the structure of the so(2,2) genera-tors is essentially the same as that of the supersymmetric shift operators A andAy. In fact, direct calculation also shows that these operators have the samee�ect on the wavefunctions in the two symmetry-based schemes [P15, P17, C4].It has to be noted that the so(2,2) algebra (or its compact version so(4))plays the role of a potential algebra only for a limited number of potentials, i.e.for the members of the PI class (factorization type A), while the supersym-metric construction presented here for PT symmetric potentials might havewider applicability. This is somewhat di�erent for the Morse potential belong-ing to the LIII class (factorization type B): it is possible to de�ne an sl(2,C)potential algebra associated with it [146, 153], but it is not PT symmetric. Itcan be made PT symmetric by de�ning it along a bent contour of the complexx plane [91, P9].
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4 SummaryThe main results of the present dissertation can be summarized as follows.1. I generalized the formalism of the factorization method by introducingspin degrees of freedom in the quantum mechanical Hamiltonian, in addi-tion to local potential terms [P6]. I pointed out that in all three examples(of which two are new) considered, the Hamiltonians possess an in�nitelydegenerate ground-state energy level. I generalized the Dirac oscillator[P2], and demonstrated that it represents an example for the intimaterelation of supersymmetry (factorization) and the Dirac equation.2. I generalized the formalism of supersymmetric quantum mechanics tocomplex potentials and exempli�ed it with the complex P�oschl{Tellerpotential [P3] in order to aid numerical calculations generating complexphase-equivalent potentials by eliminating unphysical states [P3]. Con-sidering supersymmetric transformations which change the spectrum byeliminating or adding bound states at speci�c energies or leave it un-changed, I determined closed expressions for potentials phase-equivalentwith the generalized P�oschl{Teller [C2] and the more general, Natanzon-class generalized Ginocchio potential [P4].3. I discussed two special limits of the Ginocchio potential, in which it takesthe form of the hyperbolic and trigonometric version of the P�oschl{Tellerpotential, and pointed out that the su(1,1) algebra associated with theGinocchio potential reduces to an su(1,1) potential algebra and an su(2)spectrum generating algebra, respectively [C3]. I pointed out for the �rsttime that a speci�c unitary irreducible representation (called the supple-mentary series) of the SU(1,1) spectrum generating group associated withthe trigonometric version of the P�oschl{Teller potential corresponds topotentials possessing a \weakly attractive" x2-type singularity [C1], forwhich both independent solutions are regular near x = 0.4. In a systematic study of the PT symmetric version of shape-invariantpotentials I de�ned conditions for the parameters under which the nor-malizable states belong to energy eigenvalues that are purely real [P9], orare arranged into complex conjugated pairs [P13]. I demonstrated thatexcept for the Morse and the Coulomb potentials, the PT symmetric ver-sion of the shape-invariant potantials can be obtained by an imaginaryshift of the coordinate: x! x+i�, and also that these potentials possessricher spectrum than their Hermitian counterparts [P9]. I showed that105



tuning the potential parameters of the PT symmetric (complex) squarewell, the energy eigenvalues turn from real values to complex pairs oneby one, i.e. the spontaneous breaking of the PT symmetry occurs con-tinuously [P14], in contrast with the case of shape-invariant potentials.5. Analyzing the generalized Coulomb potential, which contains both theharmonic oscillator and Coulomb potential as special cases, I presenteda novel approach to the Coulomb{oscillator connection in various spa-tial dimensions [P5]. I pointed out that the complications arising due tothe singularity of the one-dimensional Coulomb problem can be avoidedwith the use of the generalized Coulomb potential [P5]. I introduceda generalization of the Coulomb{Sturmian basis and an su(1,1) algebraassociated with it [P5]. I discussed the Coulomb{oscillator connectionfor the PT symmetric versions of these potentials too [P8]. I analyzedfurther \implicit" potentials with various shapes to illustrate the spec-tral properties, singularities [P1] and the origins [P1, P18] of Natanzonpotentials.6. I showed that a class of potentials classi�ed previously as a conditionallyexactly solvable (CES) problem is, in fact, a representative of the (ex-actly solvable) Natanzon potential class, with the property that in caseits energy eigenvalues are real they are supplied by one of the roots ofan algebraic equation cubic in the principal quantum number n [P11].Investigating the PT symmetric version of this potential I showed thatin case it has real energy eigenvalues, these are supplied by two roots, inagreement with the observation that PT symmetric potentials possess aricher spectrum than their Hermitian counterparts [P12]. I constructedanother class of conditionally exactly solvable potentials by means ofsupersymmetric transformations that eliminate the ground state, add anew one or leave the spectrum (but not the potential) unchanged [P7].I showed that the conditionally exactly solvable potentials derived thisway are beyond the Natanzon potential class. Besides reproducing knownresults, this systematic construction also produced new potentials.7. Investigating the PT symmetric version of the Scarf II potential and thesu(1,1) potential algebra associated with it, I demonstrated that a secondset of normalizable solution evolves from states that are resonances inthe Hermitian version of the potential, and this set has another su(1,1)potential related to it [P10]. I demonstrated that this doubling of thenormalizable states and algebras, which requires the introduction of the106



quasi-parity quantum number q = �1, occurs for all the shape-invariantpotentials that have su(1,1) or su(2) potential algebras associated withthem, and the two algebras can be uni�ed into an so(2,2) or so(4) po-tential algebra [P15]. I presented for the �rst time analytical expressionsfor the the pseudo-norm of the normalizable states of the Scarf II poten-tial, and showed that according to the expectations, it has inde�nite sign[P16]. As a side result of these investigations I also determined for the�rst time the normalization coe�cients for the bound-state wavefunc-tions of the Hermitian Scarf II potential [P16]. As a byproduct of theseinvestigations, I derived a previously unknown mathematical formula forthe summation of three binomial coe�cients.8. Taking the normalizable solutions of PT symmetric potentials associatedwith quasi-parity q = +1 and q = �1, I constructed a supersymmetricsheme in which the original potential has two supersymmetric parnerpotentials carrying the q = �1 quantum numbers [P17]. I demonstratedthat in case the PT symmetry of the original potential is spontaneouslybroken, its two partner potentials cease to be PT symmetric [P17]. Ipresented examples for potentials that possess a potential algebra, PTsymmetry and supersymmetry, and discussed the interrelation of thesesymmetry concepts [C4].
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