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1 Introduction

Local potentials have been used to model the interactions of the subatomic
world ever since the introduction of quantum mechanics. Some of these (like
the Coulomb potential) do not differ essentially from the forces observed in
nature, while most of them (like the harmonic oscillator, for example) rep-
resent approximations of the actual physical situation. The potential shape,
defined by the potential type and the parameters in it is usually chosen in a
way that reflects the physical picture our intuition associates with the prob-
lem; therefore we can define attractive or repulsive, short-range or long-range
potentials, etc. The concept of potentials is deeply rooted in the thinking of
most physicist. This is perhaps not surprizing, because the most elementary
examples introduced at the dawn of quantum mechanics still form essential
part of any quantum mechanical course, and also play a fundamental role in
the formulation of most physical models of the microscopic world.

Some of the potentials used in quantum mechanics are exactly solvable.
This means that the energy eigenvalues, the bound-state wavefunctions and
the scattering matrix can be determined in closed analytical form. The range
of these potentials has been extended considerably in the recent years by in-
vestigations inspired by some novel symmetry-based approaches. The concept
of solvability has also been extended: one can talk about conditionally exactly
or quasi-exactly solvable potentials too, in addition to the “classical” exactly
solvable examples. Due to these developments more and more interactions
can be modelled by making advantage of the increasingly flexible potential
shapes offered by solvable potentials. Their solutions can be applied directly,
or can be combined with numerical calculations. In the simplest case analyti-
cal calculations can aid numerical studies in areas where numerical techniques
might not be safely controlled. This is the case, for example, when bound-state
wavefunctions with arbitrary node numbers are required, for certain singular
potentials, or for complex potentials. As the next level of complexity, ana-
lytical solutions can supply a basis for numerical calculations. This makes
exactly solvable problems indispensable even in the age of rapidly developing
computational resources.

Besides their role in describing realistic physical problems, solvable quan-
tum mechanical potentials also represent an interesting field of investigation in
their own right. This is largely due to the mathematical elegance and beauty
associated with the symmetries of these problems. Symmetries and invariance
properties are among the most characteristic features of any physical system.
They usually give a deeper insight into the physical nature of the problem,



but also help their mathematical formulation. Symmetries typically lead to
characteristic patterns in the energy spectrum of the system. These features
are shared by the “classic” potential problems of non-relativistic quantum me-
chanics. Technically these are relatively simple systems, and accordingly they
include a number of exactly solvable examples, nevertheless, they represent
the showcase of a wide variety of symmetry and invariance concepts. The
most widely known symmetries of quantum mechanical potentials are based
on group theory (in particular, Lie algebras), supersymmetry and P7 symme-
try.

In group theoretical approaches [1, 2] the elements of various algebras con-
nect different eigenstates of the same Hamiltonian or some interrelated Hamil-
tonians, while the states themselves belong to the irreducible representations
of the corresponding group. A less immediate application of the concept of
symmetry appears in supersymmetric quantum mechanics (SUSYQM) [3, 4],
where supersymmetry relates two Hamiltonians which typically have (essen-
tially) identical spectra. The most recent symmetry concept is the so called
PT symmetry of one-dimensional quantum mechanical potentials [5], which
surprized the theoretical community with non-Hermitian problems possessing
real energy spectra.

My purpose with the present work was to investigate solvable potentials
from the viewpoint of various symmetry concepts and to explore how these
symmetries are related to each other. My intention was to discuss the proper-
ties of quantum mechanical problems in the most general framework whenever
it was possible. By this I mean that I tried to start with postulating some
general construction (an ansitz for the solutions, the differential realization of
operators, etc.) and to derive know results as special cases, hoping also that
the general procedure leads also to new results.

Throughout this theoretical work, I was also aware of the importance of
solvable problems in describing realistic physical problems, and I proposed the
utilization of some of my results in this field [P3, 6, P5, 7]. Since my scientific
background is in theoretical nuclear physics, I picked most of the prospective
applications from this field. My activity in the field of algebraic models of
nuclear structure (from where half of my publications originate) prompted me
to use my results in describing various cluster—cluster interactions [6] or in
developing a high-precision Green-operator method to determine bound and
resonance states of the o — o system [7]. However, I did not include these
works among the thesis points of my dissertation, because I wanted to keep
the homogeneity of the latter as a purely theoretical work. (This also means
that occasionally my results were beyond the scope of theoretical physics, as I



found some previously unknown mathematical relations [P16].)

My background in theoretical nuclear physics also determined the methods
I was using, i.e. group theory and supersymmetry. My experience in describing
complex nuclear physical systems in terms of these symmetry-based methods
was of considerable help in discussing various symmetry aspects of quantum
mechanical potentials too.

The structure of the dissertation is the following. In section 2 a general in-
troduction is given to solvable potentials of quantum mechanics, with special
emphasis on symmetry-based approaches. Besides citing the essential facts
from the literature, this section also contains some of my earlier results not
included in the theses of the present dissertation. Section 3 contains my main
results. These are arranged into five parts: in subsection 3.1 non-trivial exam-
ples are presented for the solution of the one-dimensional Schrodinger equation
and related problems, subsections 3.2, 3.3 and 3.4 contain my results concern-
ing supersymmetric techniques, Lie-algebraic methods and P77 symmetry in
the description of solvable potentials, while in subsection 3.5 the interrelation
of these symmetry concepts is discussed. Finally, the summary in section 4
lists the main results of the dissertation according to the thesis points.

In an effort to help the reader I separated typographically those parts,
which are less important and can be skipped at the first reading. 1 also started
most subsections by first stating the purpose of the work presented there and
pointing out the key motifs.



2 An overview of solvable potentials

This section contains the essential background information necessary for the
presentation of my results in section 3. The works cited here include some of
my earlier results, which do not appear among my thesis points.

2.1 General aspects of solvable potentials

Various strategies of solving the Schrodinger equation can be used, depend-
ing on the nature of the potential. The solutions of the most well-known
potentials can be obtained by transforming the Schrédinger equation into the
differential equation of some special functions of mathematical physics. This is
the case for the Natanzon class of potentials [8], for example, the solutions of
which are related to hypergeometric (or confluent hypergeometric) functions.
In some other cases the wavefunctions cannot be written in terms of such spe-
cial functions, nevertheless the techniques described below can still be applied
to them.

The procedure presented here was first used to derive some simple poten-
tials [9], but later it was developed further by Natanzon who applied it sys-
tematically to transform the Schrodinger equation into the differential equation
of the hypergeometric and confluent hypergeometric functions [8]. Following
the discussion of [10, 11], let us consider transformation of the Schrodinger
equation

d2e

e+ (B = V(@)(x) =0 ()
into the second-order differential equation of a special function F(z). For this,
we search for the solutions in the form

() = f(2)F(z(x)) . (2)

At the moment we do not specify the domain of definition for the coordinate
x itself. Later on we shall come back to this issue and its importance for P7T
symmetric problems.

Once we substitute (2) in the Schrodinger equation (1), we arrive at the
ordinary differential equation of the special function F(z)

d’F dF
1z T QR HR()F(2) =0 (3)
where, by construction
Z” 2fl B
et Q(z(z)) (4)
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From these equations an explicit expression follows for £ — V' (z):
wrneen - (5) v (f) o

M) 3 (@) o 1

22'(x) 4 (z’(m)) + (#()) (R(z(x)) C2dz 4

Besides the functions Q(z) and R(z) defining the special function F(z), (7)
contains only the function representing a variable transformation, z(z). This
also applies to the solutions themselves:

E - V(x)=

—~

o)~ ) Fewp (3 Qs Flotol) s)

We are left with the task of finding a functional form of z(z) which transforms
the Schrodinger equation (7) into an exactly solvable problem.

Of course, any randomly chosen z(z) function satisfies the latter ambitious
requirement for a particular potential V' (z) and energy E. We only cannot
guarantee in general that any other physical solution of the same physical
problem can be found in the same manner as well. In this perspective, a useful
way of finding reasonable z(x) functions has been proposed by Bhattacharjie
and Sudarshan [9]. According to them, if there is a constant (E) on the left-
hand side of (7), then there must be one on the right-hand side too. In [10]
this fact was exploited, and a systematic list of potentials was compiled by
identifying certain terms found on the right-hand side of (7) with a constant
C'. This assignment leads to first-order differential equations for z of the type

(j—) 4z =C, 0

where ¢(z) is a function of z originating from R(z) or Q(z).
The general solution of the latter differential equation is given by formula

/¢1/2(z)dz — V14, (10)

This defines an implicit function z(z) and, in many cases of practical interest,
also the explicit z(x) function we need [10]. Usually 6 = 0 is considered in order
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to set z(0) = 0. The § # 0 choice corresponds to a shift of the coordinate and
reflects a trivial and also rarely relevant transformation for potentials defined
on the real z axis, but we shall find it important in connection with P7T
symmetric potentials discussed later on in subections 2.4 and 3.4.

The general Natanzon class potentials can be obtained from a systematic
application of this transformation procedure to the hypergeometric and con-
fluent hypergeometric functions. (In the latter case potentials are sometimes
called Natanzon confluent potentials [12].) Starting from hypergeometric func-
tions the most general potential can be written as [§]

Vi) = 555 +

12" 3 <z">2 fz(z—1)+ ho(l —2) + hy2 (1)

22 4\ 7 R(z) ’
where
R(z) =a1z2(z — 1) + c12 + (1 — 2). (12)
z() is then determined from the differential equation
dz  2z(1 —2)
hudied Sl 4 1
de  RY2(z) ’ (13)

which is determined from the current version of (9) after identifying the linear
combination of three independent terms on its right-hand side with a constant.
The three coefficients (aq, ¢; and ¢q) govern the behaviour of z(z) and supply
three of the six potential parameters. (The other three parameters are f,
ho and hy in (11).) In general, there is no explicit expression for the energy
eigenvalues, rather they can be determined from the implicit formula

m+1 = (f4+1-aB)Y?* = (hg+1—coBE)Y?* = (hy +1— ¢, E,)"Y?
= a,— Bp— On, (14)

while the wavefunctions are written as
() = RV (2(2))(2(2))% 2 (1 = 2())/? 3 Fy (=1, oy, — 13 B +1; 2(x)). (15)
Natanzon confluent [12] potentials

1hm 3 h// 2 g1h2+91h+77
V(b)) = =577+ 7 (F) + O (16)

with R(h) = g9h® + o1h + ¢ can be obtained from (11) by the substitutions
ay = 09/7%, ¢t —ay —¢g = 01/7, hy — hg — f = ¢g1/7, z = h7 and taking the
limit 7 — 0.




Although equations (11) to (15) contain all the necessary formulae to get
the solutions of any Natanzon class potential, calculations become rather in-
volved in general. In many cases, for example, it is impossible to get z(x), the
solution of (13) in closed form, rather only an implicit z(z) function can be
determined. This is the case for the so-called “implicit” potentials, like the
Ginocchio [13], the generalized Ginocchio [14], the PIII [15] or the (Natanzon
confluent type) generalized Coulomb potential [16]. Once knowing z(z), z(z)
can, of course, be determined to any desired accuracy. Similarly, E, is also
contained implicitly in (14) in general, as is the case for the potential in [17].

These complications hinder the application of these formulae, except for
some special subcases, which correspond to the most well-know textbook ex-
amples for solvable potentials. These are the so-called shape-invariant po-
tentials [18], the definition of which will be given later in subsection 2.2, in
connection with supersymmetric quantum mechanics. However, considering
them in the context of the Natanzon potential class, there is a simple rule
that identifies them. In particular, they correspond to cases in which only
one of the parameters a;, ¢y and ¢; (in (12)) is non-zero, and this results a
straightforward solution for both z(z) and E, from equations (13) and (14),
respectively. Table 1 lists the known shape-invariant potentials following the
presentation of [10], which was the first complete (as it is known presently)
compilation of these potentials, and where a natural classification scheme was
also proposed for them. In [10] shape-invariant potentials have been obtained
from a systematic application of the method described previously to orthog-
onal polynomials. Substituting the Jacobi, generalized Laguerre and Hermite
polynomials [19] in (2) as F'(z) and identifying certain terms on the right-hand
side of (7) with the constant (energy) term has led to differential equations
of the type (9) which defined a straightforward classification scheme of these
potentials. The resulting potentials are displayed in table 1, along with the
differential equations defining the individual classes [10].

It has to be noted that there is some redundancy in the shape-invariant po-
tentials listed in table 1. The generalized Poschl-Teller and the Poschl-Teller
IT potentials are essentially identical, as are their trigonometric versions, the
Poschl-Teller I and the Sacrf I potentials, as can be seen from the corre-
sponding z(z) functions, which differ only in an = <> 2z scale transformation.
Also, the radial and the one-dimensonal harmonic oscillators differ from each
other in the boundary conditions. These redundant potentials are still often
mentioned as separate examples due to historical reasons.

The “implicit” and other potentials mentioned earlier occupy an interme-



Table 1:

The 12 shape-invariant potentials and their interpretation as

Natanzon-class potentials. The classes denoted with P, L and H correspond to
potentials containing the Jacobi, generalized Laguerre and Hermite polynomi-
als in their bound-state solutions.

Diff. eq. (Class) V(z) Name
z(x)
1\2
1(2_12) =C (PI)
isinh(az), C = —a? A? + (B%? — A? — Aa)sech®(az)  ScarfII
B(2A + a)sech(ax) tanh(ax)
cosh(az), C = —a? A? + (B? + A? + Aa)cosech?(az) generalized

cosh(2az), C = —4a?
cos(az), C = a?

cos(2azx), C = 4a?

22
1y = C (PTI)
tanh(ax),

C = a?
coth(az), C = a?

—icot(az), C = —a?
(2")%/z = C (LI)
§x2 , C=2w
()2 = C (LII)

2 4
Tt O = (n+el+1)2

(2')2/2% = C (LIII)
exp(—az), C = a?
(+)* = C (HI)

(3)2w-%), C=w/2

—B(2A + a)cosech(az) coth(ax)
(A — B)? — A(A + a)sech? (az)

—(A+ B)? + A(A — a) sec?(ax)

—(A + B)? + A(A — a)sec?(azx)

A? + B?/A? + 2B tanh(az)
A% + B%2/A? — 2B coth(ax)

—A? + B%/A? — 2B cot(ax)

1

4

A? — B(2A + a) exp(—ax)

+B(B — a)cosech?(az)
+B(B — a)cosec? (ax)

+B(B — a)cosec? (ax)

—A(A + a)sech?(az)

+A(A — a)cosech? (ax)
a

+A(A + a)cosec?(ax)
w?z? + l(l;” — (43w

+B? exp(—2ax)

_1 12,2
2w+4wx

Poschl-Teller
Poschl-Teller 11

Scarf I

Poschl-Teller T

Rosen—Morse 11

Eckart

Rosen—Morse T

radial HO

Coulomb

Morse

one-dim. HO




diate situation between the general Natanzon (confluent) potentials and their
shape-invariant subclass. In particular, for potentials in [13, 15, 16] two of the
three parameters determining the variable transformation z(x) (in (12) and
(13)) are non-zero, which simplifies the determination of E, from (14), but
results an implicit 2(z) function. The potentials in [17] represent another kind
of special case, in some sense opposite to the previous examples, as a special
arrangement of these three parameters (a = 4¢; = 4¢) leads to an explicit z(x)
function, but at the same time results a complicated implicit energy formula.
In principle, the Woods—Saxon potential [20] has similar characteristics, but
due to the boundary conditions its energy eigenvalues have to be determined
from a transcendent equation.

While still manageable algebraically, these Natanzon-class potentials offer
potential shapes different from the simplest solvable problems. For example,
the Ginocchio [13, 14] and the generalized Coulomb [16] potential are similar to
some nuclear physical and screened Coulomb potentials, respectively, while the
PIIT potential of [15] corresponds to some typical molecular physical potential
with a “pocket”. This flexibility of shape also means that the Ginocchio [13, 14]
and the generalized Coulomb [16] potentials have shape-invariant limits.

The simple transformation procedure outlined previously can be applied to
any other function satisfying second-order differential equations of the form (3).
It is possible to transform the differential equation of the Bessel functions into
the Schrédinger equation with the potential V(r) ~ exp(—r/a) (with [ = 0)
and that of a particle enclosed in a sphere [20], however, the Bessel functions
are less appropriate for this treatment than the orthogonal polynomials. One
reason is that the R(z) function in (3) and (7) has more complex structure,
R(z) =1 — v?/2?, and this indirectly means that the wavefunctions are more
difficult to handle, furthermore, the energy eigenvalues cannot be written in a
closed form, rather they have to be determined from the zeros of the Bessel
functions.

In some cases the Schrédinger equation cannot be solved by the transfor-
mation procedure used previously, as the wavefunctions cannot be written in
terms of known special functions. An example for this situation is the family of
quasi-exactly solvable (QES) potentials [21]. These potential problems cannot
be solved exactly in general, except for some special values of the parameters,
when a finite number of exact energy eigenvalues and eigenfunctions can be
determined. Typical examples for QES potentials are anharmonic oscillators
and polynomial-type potentials. In this case the basis states are constructed
as polynomials times an exponential factor containing also polynomials. Sub-
stituting them into the Schrodinger equation and then matching the terms
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with various powers typically leads to recursion relations for the coefficients
appearing in the basis states. The recursion series can then be terminated by
an appropriate choice of the parameters, which means that the first few basis
states can be obtained in closed form.

The most recent concept of solvability is related to conditionally exactly
solvable (CES) potentials. The first models coined CES potentials [22, 23] were
characterized by the fact that the coupling constant of some potential term had
to be fixed to a numerical constant value in order to obtain their solutions.
Some of these potentials [24] can be obtained by the ad hoc modification
of the Natanzon confluent potentials, e.g. by changing the powers of h in
(16). The techniques of supersymmetric quantum mechanics (to be reviewed
in subsection 2.2) offer further ways to generate exactly solvable potentials
from known ones, some of which have been classified as CES potentials [25].

2.2 Supersymmetric quantum mechanics

Supersymmetric theories describe bosons and fermions in a unified way, there-
fore their algebraic formulation makes use of commutators as well as anticom-
mutators. These theories appeared first in quantum field theoretical studies,
where they turned out to be less divergent than conventional theories. How-
ever, if supersymmetry exists in nature, then it must be broken, because there
is no evidence for degenerate boson—fermion multiplets, and this fact has gen-
erated interest in supersymmetry breaking mechanisms. This is how super-
symmetric quantum mechanics (SUSYQM) was born [26], but it soon began
to live its own life.

In quantum mechanics the most widely used construction is N = 2 super-
symmetry, in which the supersymmetric Hamiltonian # and the @ and Q!
supersymmetric charge operators satisfy the following relations [3, 4]

{Q.Q"y =H Q> =(QN)* =0
Q,H] = [Q",H] =0, (17)

i.e. the charge operators are nilpotent and commute with the supersymmetric
Hamiltonian.
The realization of this superalgebra is usually given in terms of 2 x 2 ma-

trices: ;
R O
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where A and A’ are some operators to be specified later. These matrices

together with T
AT A 0\ _(H_ 0
w0 )= i) 19)

represent a realization of the algebra (17), which is also recognized as the
sl(1/1) Lie superalgebra. Based on the above matrix realization of these op-
erators we can interpret the supersymmetric Hamiltonian H as a composition
of two scalar Hamiltonians H_ and H,, which act in the “bosonic” and the
“fermionic” sector of the two—component basis states. These two sectors are
connected by the charge operators as

@ (1/);-)) = (agi0) @' (ytn) = (A“é)m) - (20)

where (7 and ¢(*) stand for eigenstates of the “bosonic” Hamiltonian H_ =
A'A and the “fermionic” Hamiltonian H, = AA'. H_ and H, are called
supersymmetric partners.

The existence of the superalgebra (17), and in particular, that of the su-
persymmetric charges commuting with the supersymmetric Hamiltonian has
important implications regarding the energy spectra of H_ and H, [3, 4]. First
of all, it follows from their construction that the eigenvalues of H_ = A'A and
H, = AA' are non-negative. Let us assume that 1»(~) and 1/(*) are normalized
eigenfunctions of H_ and H., with eigenvalues E(=) and E), respectively:

H ) = EOy) H o) = E®y), (21)
The simple equation
H. (Ap©)) = AAN(Ap©D) = AH ) = EO) Ay (22)

clearly shows that E(7) is also an energy eigenvalue of H.,, and the correspond-
ing normalized eigenfunction is

1/)(+) — (E(’))’I/ZAU)(’), (23)

except when A7) = 0 holds. Similar arguments apply to the reverse situation
when the roles of H_ and H, are exchanged:

H,(AW)(”) - ATA(AW)(*)) = AtH ) = E&) ATy (24)
i.e. Bt is an allowed eigenvalue of H_ too, with the normalized eigenfunction

P = (E(+))‘1/2AT1/)(+), (25)

12



Figure 1: Schematic sketch of the possible arrangement of the energy spectra
of the supersymmetric partner potentials H_ and H, .

except when Afyy(t) = 0 holds.
This kind of relationship between the supersymmetric partner Hamiltoni-
ans leads to three possible patterns of their energy spectra. (See figure 1).

i) Whenever A@ZJ((]_) = 0 holds for a normalizable eigenstate of H_, H_ w(()_) =
ATA@/}((]_) = 0 implies that this eigenstate is also the ground state of H_ with
ES) =0 eigenenergy. This argument holds in the reverse direction too, as
0= E7 = (1At A1ST)) = |A[w{T)? leads to Ay{™ = 0. In this case
H has no normalizable eigenstate with zero energy, and we get the situation
depicted in panel a of figure 1 with

B = B

n 3

n=0,1,2, ., ES7 =o. (26)

The eigenstates of H_ and H, lying at the same energy are related to each
other as (") = (E\)) 72 A4}, and ¢}, = (B(H) 712 ATg(H.

ii) The same line of reasoning applies to the case in which the roles of H_
and H, are interchanged and the energy spectra are similar to those shown in
the b panel of figure 1.

iii) If neither H_ nor H, have normalizable eigenstate with zero energy,
the spectra of H_ and H, turn out to be identical, as shown in the ¢ panel of
figure 1. This case is known to correspond to broken supersymmetry.

Until this point the operators were considered as abstract mathematical
quantities which satisfy some prescribed relations, and were not specified in
more detail. Now we shall consider a specific differential realization of A and
AT from which the one-dimensional Schrodinger equation (with i = 2m = 1)
can be recovered:

2

Hyp®) () = (—d— + Vi(x)> Y F(2) = EEyp® (). (27)

dz?

13



One possible choice for this is

d d
A= — Al = —— 2
o W(x), w W(x), (28)
which recovers (27) with the potentials
d
Vi(z) = W(x) + avv(x). (29)

W (z), the superpotential is uniquely related to the ground—state wavefunction
of H_ via A@ZJ((]_) =0:

W(a) =~ n (o), (30)
05 (@) = Noexp (= [T W()dy) (31)

where Ny is a normalization constant.

An immediate consequence of these results is that whenever the solutions
of a one-dimensional potential V_(z) are known, the solutions of its supersym-
metric partner potential

d? _

Vi) = Vo(2) = 2 Ing () (32)
can also be obtained, furthermore the bound-state energy spectrum of the two
potentials are related by (26). This procedure can be followed for any potential
(after possibly a simple shift of the energy scale setting ES7 = 0), furthermore
it can be applied to potentials solved by either analytical or numerical methods.

A further remarkable aspect of SUSYQM is that a whole series of isospec-
tral solvable potentials can be constructed by consecutive application of this
procedure. Adjacent members of this hierarchy of potentials are supersym-
metric partners, and each potential has one less bound state than the one
constructed at the previous stage.

Here we may note that (6) offers a straightforward connection to the for-
malism of SUSYQM. In particular, whenever R(z) vanishes for the ground
state, we have

E—-V(z)=-W?3(z) + 2—2/, (33)

with the superpotential being
W) = —nf(a) (34)
— QG + 55 ()

14



The condition R,—¢(z) = 0 always holds for the orthogonal polynomials, mak-
ing them an ideal subject of the SUSYQM approach.

Despite their similar bound-state energy spectra, supersymmetric partner
potentials constructed by (32) usually have different structure (both in the
geometric and algebraic sense). In some cases, however, V_(z) and V, (z) have
the same functional dependence on the coordinate and differ only in some
potential parameters which set their depth and shape. This is the case with the
shape-invariant potentials [18] mentioned previously in subsection 2.1. These
potentials are defined by the relationship

Vi(w;a0) = Vo(2;301) = W2 (@3 a0) + W' (25 00) = W (5 a1) + W' (w3 01) = R(an),

(36)
where ay and a; stand for parameters of the supersymmetric partner potentials,
and R(a) is a constant. The two sets of potential parameters ay and a; are
connected by simple mathematical formulae written formally as

ap = f(ao)- (37)

This f function turned out to be a simple addition: a;.1 = a; + const. for the
shape-invariant potentials [18]. Equation (36) shows that for shape-invariant
potentials the consecutive application of a SUSY transformation (32) and a
change of the potential parameters as in (37) recovers the original potential,
apart from an energy shift. It can be shown [18] that the discrete energy
spectrum of V_(x; ag) can be written as

B = 3 Ra), (38)

where ay, is generated by the consecutive application of f in (37):
ar = f*(ao). (39)

Besides their energy eigenvalues, the wavefunctions of these shape-invariant
potentials can also be computed in a straightforward way. Combining the fact
that these potentials have the same functional form and that a whole hierarchy
of potentials can be generated in terms of SUSYQM, it was shown [27] that the
wavefunctions ¢ (z; ag) of potential V_(x; ag) can be obtained by consecutive
application of the SUSYQM laddering operators Af(z;ay), as

VN (x5 ag) = NoAl (25 a0) AT (25 ay).... Al (; an_l)w(()_)(x; ). (40)

n
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As it has been mentioned already in subsection 2.1, shape-invariant poten-
tials turned out to play a distinguished role among solvable potentials. This is
mainly due to their feature that acting on their bound-state wavefunctions with
the linear differential operators A, the resulting function can be rewritten in
terms of a single wavefunction of the type (2), i.e. it is recovered in essentially
the same form as the original wavefunction, except for the potential param-
eters appearing in it. This is not the case for the general Natanzon-class [8]
potentials: in that case the resulting wavefunction contains two terms with two
separate special function of the type F'(z), i.e. the partner potential V, (z) is
outside the Natanzon class. This peculiar feature of shape-invariant potentials
prompted a search for potentials with this property. Several attempts have
been made to identify and classify all shape-invariant potentials [28, 10, 29]
and the results suggest that finding such potentials in addition to the known
ones listed in table 1 is unlikely. It was also shown [30] that several of these
12 potentials have been “rediscovered” in one way or another. In addition to
the bound-state spectra and the wavefunctions of these potentials scattering
amplitudes have also been calculated [31] for them.

It is notable that the classification scheme followed in table 1 [10] is basically
the same as that of Infeld and Hull [32] based on the factorization method
[33] and that of Miller [34] originating from the Lie theory of special functions,
while it differs from the classification scheme of Cooper et al. [28] which was
derived following the ideas of SUSYQM.

We note that there were attempts to generalize the concept of shape-invariance
to systems where the f function in (39) is a multiplicative, rather than an
additive function [35], but this hasn’t resulted in meaningful potentials.

As it has been mentioned previously, eliminating the ground state of a
potential is only one of the possible transformations handled by SUSYQM
(see figure 1). The remaining cases, i.e. altering the potential while inserting
a new ground state or leaving the spectrum unchanged can be implemented
in a similar way, except that instead of the ground-state wavefunction, some
unphysical (but nodeless) solutions have to be used. The boundary conditions
of these solutions will then determine the effect of the SUSY transformation
on the energy spectrum and on the potential [36, 37].

Here we consider the radial Schrédinger equation

o) = (=355 4 0)) o10) = Bt (1)
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but a similar treatment of the one-dimensional motion (—oc < z < o) can
also be formulated by imposing different boundary conditions on the physical
solutions of (41) [38]. In what follows we assume that V;(r) already contains
the centrifugal term /([ + 1)r=2 with an orbital angular momentum [ which
remains fixed, and that V(r) behaves like V (r) ~ m(m + 1)r=2? near the ori-
gin, where m is a positive integer, i.e. it can have additional singularity if
m # [ holds. We also change the notation somewhat: potentials (Hamiltoni-
ans) linked by these transformations may still be considered supersymmetric
partners, nevertheless their labelling with + and — may become confusing in
some situations, therefore we shall abandon these symbols.
Consider the factorization

H = AT(e)A(e) + ¢ (42)
of H in (41), with
A = (A1) = S+ Ling, (43)

where ¢ is a solution of H¢ = €¢. ¢(r) need not be a physical solution in order
to generate reasonable potentials in this more general approach, however it
has to be nodeless, otherwise the resulting potential would have singularities
for r # 0. Following the procedure presented previously in this section, the
SUSY partner of V4(r) in (41) can be defined as
d2

Vilr) = Va(r) = 205 I o) (14)
with the difference that ¢(r) may be different from the ground-state wave-
function. If we take ¢ = FEy and ¢(r) = y(r), we, of course, arrive at the
special case discussed in in detail previously, i.e. the transformation which
eliminates the ground-state wavefunction of Vj(r), but leaves the rest of the
energy spectrum unchanged.

The nodelessness of ¢(r) can be secured if we consider a factorization energy
€ = —% < Ey (with v > 0). In contrast with the usual procedure for physical
solutions, now we can consider two independent solutions of Hp = e¢p = —~2¢.
Taking appropriate linear combinations of the two independent solutions, four
types of solutions can be constructed, depending on whether they are regular
or irregular at the origin and asymptotically.

These four types of transformations (denoted usually by Ty, Ts, T3 and T
[36]) have characteristic effect on the singularities of the potentials near the
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Table 2: SUSYQM transformations belonging to different types of solutions
é(r) [36, 37]. Here ¢ = —2 < Ej.

Transformation T 15 T; Ty

€ e = Fy e < Fy e < Fy e < Fy

lim, ¢ rmtl r—m rmHl r—m

lim, oo exp(—~yr) exp(yr) exp(yr) exp(—yr)

Spectrum deletes ground adds new ground none none
modification state state (0 < m) (0 < m)

Singularity (m+1)r—2 —mr2 (m+1)r—2 —mr~?
modification

Phase shift —tan"1(k /o) —tan 1(k/y)  —tan"Y(k/y) —tan"1(k/7)
modification

origin, as well as on the phase shifts of the scattering wavefunctions. These
quantities are related to the boundary conditions of the solution ¢(r) of Hp =
€, as simple calculations starting from equations (43) and (44) reveal in each
case. The results are summarized in table 2 [37]. Note that transformations
T, and T, work only if m > 0 holds, i.e. if the original potential V;(r) has
already had a singularity.

It has to be mentioned here that there is a conceptual difference between Suku-
mar’s [36] and Baye’s [37] interpretation of the four types of transformations.
Sukumar originally assumed that these transformations change the angular
momentum with one unit, which accounts for the difference of the singularity
between Vj(r) and Vi(r). However, Baye has pointed out that the value of the
orbital angular momentum has already been set when the radial Schrodinger
equation (41) was written down [37], therefore the centrifugal term should
remain unchanged during the whole procedure.

These results can be applied to the one-dimesional motion too, after modifica-
tion of the boundary conditions [36], i.e. getting rid of 2~ 2-like singularities.

Finally, it has to be noted that although here we have formulated these
transformations in terms of the factorization method which is closer to the
formalism of SUSYQM, the whole procedure can also be recognized as the
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Darboux transformation [39] of second-order differential equations. A brief
review on various approaches to isospectral potentials in terms of the Darboux
construction can be found in [40], for example.

An even more sophisticated supersymmetric construction can be obtained
by iterating the single SUSY transformations mentioned up to this point. Us-
ing pairs of such transformations one can construct [37] potentials that lead
to the same phase shifts as the original potential, despite the different number
of bound states the two potentials support, and this result was interpreted
in terms of the generalized Levinson theorem [41]. This aspect of SUSYQM
also allowed straightforward interpretation of the long standing problem rep-
resented by the duality of “deep” and “shallow” type potentials used in the
description of interacting composite particles. The relation of SUSYQM to
other methods of analyzing isospectral potentials, such as the inverse scatter-
ing theory [42] has also been discussed [36, 43, 11].

More recently the formalism of generating phase-equivalent potentials has
been developed to a stage where, in principle, arbitrary modifications of the
energy spectrum are possible [44, 43, 45]. The final potential and the wavefunc-
tions are expressed in terms of compact formulae depending on integrals and
determinants composed of physical and unphysical solutions of the Schrodinger
equation. These expressions can be evaluated by numerical techniques in gen-
eral.

Pairs of single SUSY transformations can be employed to generate po-
tentials phase-equivalent with the original one provided that the factoriza-
tion energies are chosen to be equal, guaranteeing that the original scattering
phases are restored after the second step. For the resulting transformation,
the factorization energy is not anymore required to be smaller than E(()O), the
ground-state energy of Vy(r). As described in [44], for example, only three
non-trivial combinations are possible, and the resulting potential is written as

d (0 (ko, 7))
dr B+ [ (go(ko, ))?dt -

The appropriate choices of ¢g(ko, r) and  are summarized in table 3, where the

Vo(r) = Vo(r) + 2 (45)

properties of the three basic transformation types are also given. In table 3, ¢(()i)
represents the wavefunction of an arbitrary bound state at energy Eéi) = k(()i)Z
while f; represents a solution decreasing at infinity and singular at the origin,
at any negative energy Fy = kZ where there is no bound state. The integral in
the denominator of (45) always converges because the chosen g (ko, r) decrease
exponentially at large r, in all cases. The wavefunctions of V5(r) are expressed
in terms of the original wavefunctions ¢, (k, ) and the (physical or unphysical)
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Table 3: Properties of the three transformations resulting in potentials phase-
equivalent with the original potential V;(r). We suppose that Vy(r) is singular
at the origin as V(r) =~ m(m + 1)r~2, which accounts for the centrifugal term
too.

Transformation ~ Removes a bound  Adds a bound state Unchanged

state (m > 1 only) spectrum
Solution ¢ vy fo vy
Parameter (3 -1 a>0 a/(l—a),a>0
Fact. energy By, ES” <0 Eo#EY, E,<0  EY<o0
lim, 0 rmtl pom pml
lim, 0 exp (kg |r) exp(—|ko|r) exp(—|kg|r)
Singularity of Vo (m +2)(m+3)r=2 (m —2)(m—1)r"2 m(m+ 1)r=2
Fy(k)/Folk) K/ 41k (B + ko) /K2 1

factorization functions yg(ko,r) as

S SOU(kU,t)%(k,t)dt)
B+ [ (polko, t))2dt /-

Here N = 1, except for k = kg when ¢y(kg, ) is physical, in which case N' = «
[11].

ook, 1) = N2 (0o, ) — po(ko, 7) (46)

Further potentials phase-equivalent with V;(r) can be derived by iterating
transformation pairs [43, 45]. The equivalent of (45) for multiple spectrum
modifications can be written as a compact formula involving a determinant
containing integrals of physical and unphysical solutions satisfying (1) [43, 45],

d? o0
Vzm(T) = VO(T) — 2@ Indet (,31‘51‘]‘ + / (,Do(ki,t)(po(kj, t)dt) , (47)

where the k; correspond to m different factorization energies E; = k? A
similar formula is available for a generalization of (46) with equations (20)
and (21) of [45]. These transformations are, in principle, capable of generating
arbitrary modifications of the energy spectrum while keeping the scattering
phases unchanged. The determinant form also suggests that the final result is
independent of the sequence of the individual transformation pairs, because
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exchanging two of them merely corresponds to exchanging two columns of the
determinants.

Before closing this subsection, we briefly mention some generalizations of
the methods based on supersymmetry and factorization. First we note that
the isospectrality of Hamiltonians can be generated by surprisingly simple
constructions that do not even refer to the explicit realization of the operators
involved. The intertwining relation [47, 48] between Hamiltonians H; and Ho

HlQ = QHZ (48)

guarantees, for example, that if there exists an eigenstate ¢y of Hy with eigen-
value £, then Qi) will be an eigenstate of H; with the same eigenvalue.
(Note that if ) has an inverse, then the above relation can be interpreted as a
similarity transformation between H; and H,.) However, based only on (48)
nothing more can be said about the energy spectra in general. A particular
realization of (48) can be obtained by assuming that the two Hamiltonians are
factorized as

H, =QR, H; = RQ . (49)
With the additional requirement Q = R’ the Hermiticity of the Hamiltonians
and the non-negativity of their eigenvalues can also be guaranteed.

It is remarkable that these rather general results of the factorization method
133, 32] hold in their abstract form, without specifying the realization of the op-
erators. In most cases the Schrodinger equation is factorized in one dimension,
i.e. on the z = (—o0, 00) or the [0, 00) intervals (in case of radial equations) or
on a finite interval. Then the ) and R operators are naturally chosen as linear
differential operators. Combining operators of the type () and R with matrices
gives rise to various SUSYQM constructions, as we have seen previously in the
present subsection.

The construction leading to isospectral Hamiltonians can be generalized
in several ways. One possibility is considering differential operators of higher
order in the realization of the ) and R-type operators [49, 48]. Another possi-
bility is using larger matrixes, as in parasupersymmetric quantum mechanics
[50], which replaces the fermionic degrees of freedom with parafermionic ones.
This latter theory has also been connected with quantum algebras, and some
solvable potentials have been discussed in this context [51].

2.3 Lie-algebraic methods

Physical problems can often be formulated in terms of some algebraic frame-
work, and this largely facilitates their discussion, because a number of results
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can be directly interpreted in terms of the powerful machinery of group theory.
In this case the ladder and weight operators typically appear as the elements
of various algebras, while the Hamiltonian is constructed from the same op-
erators: it can be related to the Casimir operator of the same algebra, or it
can be an element of the algebra. The basis states (generally bound states)
are assigned to group representations. In some cases the states assigned to
the same irreducible representation are bound levels belonging to the same
problem either with different energies or degenerate in energy. In these cases
we talk about spectrum generating algebras and degeneracy algebras, respec-
tively [1, 2]. In the latter case the Hamiltonian commutes with the elements
of the algebra. When all the states of a problem are interconnected by the
elements of some algebra, it takes the name of dynamical algebra. Examples
for this are so(4,2) for the Coulomb potential [1] and mp(6) for the isotropic
three-dimensional harmonic oscillator [52]: the latter is the algebra of the
metaplectic group, Mp(6), which is the covering group of the symplectic group
Sp(6,R), containing the states with even number of oscillator quanta in one ir-
reducible representation and the states with odd number of quanta in another
one.

In most applications to quantum mechanical potentials the algebras con-
sidered were the somewhat trivial su(1,1)~so(2,1) [1, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 12, 63, 64]

[Joy o] = £ (50)
[Jy. J-]==2J., (51)

or its compact version, su(2)~so(3), which can be obtained by the J, — iJ.
transformation. The reason certainly is that the one-dimensional quantum
mechanical potential problems are usually too “simple” to accommodate large
algebraic structures as degeneracy or dynamical algebras, because they typ-
ically support non-degenerate bound states, except for radial problems, like
the harmonic oscillator mentioned before, where degenerate states exist with
different values of the orbital angular momentum /. However, there are only
two potentials (the harmonic oscillator and the Coulomb potentials) for which
exact solutions are known for any value of [, so for the remaining potentials
the degeneracy and dynamical algebras cannot be formulated in general.
Nevertheless, there are ways to implement less trivial algebras for potential
problems too (as so(2,2) [65, 66] or so(4) [65, 67]). One possibility is considering
different systems connected by the elements of some algebra. This is the case
with the potential algebra [61, 68]. This is somewhat similar to the degeneracy
algebra in the sense that the elements of the algebra connect degenerate levels
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which, however, belong to different Hamiltonians. Not surprisingly, the prob-
lems discussed in terms of the potential algebra context are essentially the same
ones that can be approached using the factorization method and SUSYQM.
The number of exactly solvable problems admitting a potential algebra is lim-
ited to some well-known (shape-invariant [18]) problems like the P6schl-Teller
and Morse potentials, for example. The ladder operators of the su(1,1) po-
tential algebras related to these first examples can be recognized as the shift
operators of type A and B problems in the factorization method [32, 34] and
also as the operators A and A' related to these problems in SUSYQM. Type
A and B problems are displayed in table 1 as PI and LIIT class potentials
[10] related to the Jacobi and generalized Laguerre polynomials, respectively.
The practical equivalence of the su(1,1) potential algebra (and its compact
version, su(2)) with the SUSYQM approach to shape-invariant potentials has
been discussed in [69], and later on in [70, 71].

A further interesting aspect of potential algebras is that whenever they are
non-compact, scattering states can be treated on an equal footing with bound
states: the former belong to the continuous unitary irreducible representations
and the latter to the discrete unitary irreducible representations of the relevant
algebras. Non-compact potential algebras are so(2,1)~su(1,1) assigned to the
Morse and the Poschl-Teller potentials [61], but later on the larger so(2,2) po-
tential algebra was also introduced [72, 73]. In fact, so(2,2) has been identified
as the algebra of the rather general Natanzon family [8] of solvable potentials
(72, 73]. In relation with Natanzon potentials, the concept of the satellite al-
gebra has also been proposed [74]. This is an so(2,1) algebra which connects
the states of different Natanzon potentials, but the energies of these states are
not degenerate, in contrast with potential algebras.

To summarize the results and to establish the notation, here we discuss a
general differential realization of the su(1,1) algebra (including also su(2)), in
which the Hamiltonian is related to the Casimir invariant

Cy = —J J_+J2—1J, (52)
—J I+ J2+ T, (53)

which in this realization takes the form of a second-order differential operator.
The eigenstates of Cy and J, (with eigenvalues j(j 4+ 1) and m, respectively)
serve as a basis for the irreducible representations of the SU(1,1) group, and can
be labelled by [jm). In contrast with the unitary irreducible representations
of the compact SU(2) group, which are finite-dimensional, those of SU(1,1)
are infinite-dimensional and come in several types. First, there are discrete
unitary ireducible representation called the discrete principal series Dj, for
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which
, p=10,1, ...) (54)
m=—j, —j+1, —j+2, ... (55)

hold. Another discrete series is D; , with opposite signs for j and m. Then

there are the continuous principal series with

1
j=—5+ik, (0 < k) (56)
1 3
m=0£1 £2 .. or m=dg, £, .. (57)

In the potential group approach these discrete and continuous unitary irre-
ducible representations were associated with the bound- and scattering-state
solutions of the Poschl-Teller and Morse potentials, for example [61]. Finally,
there are the so-called supplementary series, for which

1
—5 <i <0, m=0+1, £2, ... (58)

holds, but which did not play any role in the formulation of the potential group
approach [61]. The representation labels discussed here ultimately appear in
the coupling coefficients and the energy formula of the physical problem. In this
respect it has to be noted that they are not necessarily restricted to integer
or half-integer values (as in some of the formulae above): using projective
representations [75] arbitrary real values are allowed for them.

Following Sukumar [60], we consider the realization of su(1,1) in terms of
the first-order differential operators

Iy = et (ih(x)% (o) + fla) ], + c(x)) (59)
and 5
J, = —ia—¢ : (60)
together with the following form of the basis states
gm) = Ujm(x) = "t (z) . (61)

Here x is a spatial coordinate variable while ¢ is an auxiliary phase factor. It
was shown that (51) is fulfilled, provided that the relations

df _

£2(@) = h() 3 =1 (62)
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and
de

ha) 3o — cla)f (@) = 0 (63)

hold. (Equation (50) is automatically satisfied by this construction.) In terms
of this realization the Casimir operator has the form

G = g ) (G + 2 - 1) o
- (10 - 0 - 1)+ 0] 2@+ (1 - )

(64)

An important observation is that the su(1,1) algebra remains intact under
variable and similarity transformations defined by z — 2(z) and ¥, (z) —
Tlm)\lfjm(m), respectively. The only essential changes occur for h(z) and g(x)
in the two cases:

() = h(z(2) T (65)
g(z) = g(x) + h(m)% Inv(x) . (66)

It has to be noted that su(1,1) remains unchanged provided the the functions
governing transformations (i.e. z(x) and v(z)) do not depend explicitly on m,
the eigenvalue of generator .J,. Obviously, these transformations are nothing
but the algebraic version of the method discussed previously in subsection
2.1, and (64) can be chosen to be the Schrédinger equation or the second-
order differential equation of some special function. To this end only the four
functions appearing in (59) have to be chosen in an appropriate way. In fact,
in order to obtain the Schrodinger equation, one further condition has to be
imposed on these functions in addition to (59) and (60):

P 2g(x) — f(x) =0, (67)
It can also be noted that the mathematical construction presented here can be
used to recover potentials associated with the compact su(2) algebra as well.
This requires only the redefinition of the functions h(z), f(x), g(z) and ¢(x) by
multiplying them with the constant imaginary factor i (or —i). This operation
changes the sign of the right-hand side of (62), but does not affect (63). The
expression for the Casimir operator in (65) also remains valid in its present

25



form: the h(z) — ih(x), ..., etc. transformation simply changes the sign of its
terms except for the one JZ.

In [69] this algebraic transformation method was applied systematically
to the differential equations of orthogonal polynomials to recover su(1,1) and
su(2) algebras associated with the shape-invariant potentials. The algebras
turned out to be potential or spectrum generating algebras. Furthermore,
it was found that in some cases the generators form a compact su(2) algebra
rather than a non-compact su(1,1) algebra considered originally. This is related
to the nature of the individual potentials (i.e. whether the number of their
bound states is infinite or not, or whether they have scattering states, etc.).

Potential algebras have been recovered for two classes of shape—invariant
potentials: the LIII class (i.e. the Morse potential) and the PI class which con-
tains five individual potentials (see table 1). A characteristic feature of these
potentials is that the h(x) function in (59) is a constant, and the differential
form of Casimir operator (64) is proportional to the Schrodinger equation up
to a constant. For the same reason the J, and J_ generators of these poten-
tial algebras are practically identical with the A" and A ladder operators of
SUSYQM in the sense that they have the same effect on them [69]. This was
confirmed later also in [70, 71]. These potentials belonging to the PI and LIII
shape-invariant class correspond to type A and B potentials in the factoriza-
tion method [32] and a study based on the Lie theory of special functions [34].
See also [10] for the details.

Spectrum generating algebras have been recovered for the LI, HI classes
(i.e. the harmonic oscillators in three and one dimensions) and for special
(symmetric) cases of PI and PII potentials. A common feature of these alge-
bras is that in contrast with the case of potential algebras, now the variable
transformation results an h(z) function which is different from a constant,
and, consequently the Hamiltonian has more complicated structure and does
not necessarily commute with the generators. Due to the same circumstances
(i.e. h(z) # const) the SUSYQM ladder operators differ from J, and J_ in
this case. The Coulomb problem in three dimensions, i.e. the LII (or type F
(32, 34]) class turned out to be inaccessible with this method. This is because
the variable transformation z(z) depends explicitly on the n and | quantum
numbers (or the m eigenvalue of the J, generator), and this prevents the use
of the present differential realization of the su(1,1) algebra in this case.

Some of the algebras recovered in [69] can be embedded into some larger
algebras. This is the case with the Scarf II, the generalized Poschl-Teller,
the Morse potential [63] and the three—dimensional harmonic oscillator [1], for
example. It was also shown [72, 73] that the Natanzon class potentials can be
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associated with an so(2,2) algebra. It also has to be noted that the differential
realization (59), (60) of the su(1,1) algebra is only one possibility, and there are
others in which the parametrization is done without auxiliary phase variables
(53, 1, 56, 62, 64].

2.4 PT7 symmetry of potentials

The most recent symmetry concept discussed here requires the invariance of
the Hamiltonian under the P77 operation, i.e. the simultaneous action of the P
spatial and the T time reflection operations (the latter essentially being com-
plex conjugation). For one-dimensional potentials of nonrelativistic quantum
mechanics this invariance requires (V(—z))* = V(z). Therefore PT invariant
potentials are typically complex, and their real component is even, while their
imaginary component is odd function of z. Although this symmetry concept
requires only the commutation of a single operator with the Hamiltonian, i.e.

PTH(PT) ' =PTHPT =H , (68)

so mathematically it seems less sophisticated than supersymmetric and Lie-
algebraic symmetry concepts, it has surprisingly far reaching consequances
regarding the energy spectrum of the potential. In particular, it was found that
despite being complex (i.e. non-Hermitian), these potentials often have real
energy eigenvalues, and this unusual feature was associated with the invariance
of the Hamiltonian under the P7T operation.

In the majority of quantum mechanical problems the Hamiltonian of the
system is Hermitian, and this requirement guarantees that the bound-state
energy eigenvalues are real. In some cases, however, the physical situation
is such that the application of non-Hermitian Hamiltonians is justified. This
happens, for example, for complex potentials used mainly in nuclear physics
and accounting for the absorption of incident particles. In these models the
discrete energy eigenvalues become complex in general. This is clearly different
from the properties of PT invariant potentials. One important difference with
respect to the complex optical potentials applied in nuclear physics, for exam-
ple, is that these potentials are radial ones (see [76]), while the PT symmetric
potentials are defined on the full z axis or on a finite domain of it, but they
are also often defined on various contours of the complex x plane.

Strangely enough, the first examples for complex potentials with real spec-
tra were found using numerical techniques [5]. The potentials considered in the
first studies were typically polynomial type potentials with imaginary coupling
coefficients [5]. These problems were defined on the complex x plane, and it

27



was found that normalizable solutions can be found along trajectories falling in
certain wedges of the plane. Similar problems have been identified (sometimes
in retrospect) from methods based on Fourier transformation analyses [77],
semiclassical estimates, [78], numerical calculations [79], Sturm-Liouville-like
theory [80], variational techniques [81] or perturbation methods [82].

Obviously, exactly solvable examples can be rather useful in the more thor-
ough understanding of P77 symmetric quantum mechanics, so exact analytical
solutions to such problems have soon been derived [83, 84, 85, 86, 87, 88, 89, 90,
91, 92]. Most of the exactly solvable PT symmetric potentials have analogues
in usual quantum mechanics. In some cases P7T invariance is reached by simply
setting the coupling constants of the odd potential terms to imaginary values.
This was easy with potentials defined originally as one-dimensional problems
on the full z axis [83, 84, 85]. In some other cases the coordinate x is shifted
with an imaginary constant to z —ie. One important aspect of this imaginary
coordinate shift was that it cancelled the singularities typically appearing in
some potentials at © = 0 (like the centrifugal barrier), and then these origi-
nally radial problems could be naturally extended to the full x axis [77, 86, 87].
For another class of potentials asymptotically deformed integration paths are
defined to secure normalizability of the solutions [88, 89, 90, 91, 92]. It is
not surprising that these exotic complex potentials had some unusual features.
The cancellation of singularities encountered in the Hermitian versions of these
potentials, for example, led to less strict boundary conditions, and thus to a
richer energy spectrum.

It was also noticed that P7 symmetry is neither a necessary, nor a suffi-
cient condition for having real energy spectrum in a complex potential. It is not
a necessary condition, because there are complex non-P7 symmetric poten-
tials with these properties [83, 90] some of these are complex supersymmetric
partners of real potentials. Neither is P7 symmetry a sufficient condition,
because complex-energy solutions of such potentials are also known, and since
in this case the energy eigenfunctions cease to be eigenfunctions of the PT
operator, this scenario has been interpreted as the spontaneous breakdown of
PT symmetry [5]. No general condition has been found for the breakdown of
PT symmetry, but it has been observed that it usually characterizes strongly
non-Hermitian problems [5, 93, 94].

The lack of Hermiticity raised questions about the probabilistic interpre-
tation of the wavefunctions (probability density, continuity equation), and in
general, about the definition of the norm and the inner product of the eigen-
vectors of the non-Hermitian Hamiltonian. It has been suggested, for exam-
ple, that the 1?(x) quantity should replace [1)(z)|? in the definition of the
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norm [81]. For unbroken P7T symmetry this expression coincides with the
(z)*(—z) quantity used in the definition of the pseudo-norm [95], which is
obtained from the modified inner product (v;|P|¢;). This redefinition of the
inner product was found to lead to the orthogonality of the energy eigenstates,
but it also resulted in an indefinite metric, replacing the usual Hilbert space
with the Krein space [96]. Efforts have been made to restore the Hermitian
formalism using projection techniques [95, 96].

More recently PT symmetric quantum mechanics was put into a more
general context, as the special case of pseudo-Hermiticity [97]. A Hamiltonian
is said to be np-pseudo-Hermitian if

H' = nHnp™! (69)

holds, where { denotes the adjoint operation. (Sometimes pseudo-Hermiticity
is defined by the intertwining relation H'n = nH, because this doesn’t require
the invertibility of the n operator.) Obviously, n = 1 recovers conventional
Hermiticity, while P7 symmetric Hamiltonians are P-psudo-Hermitian. It

was also shown, that for n-pseudo-Hermitian systems the inner product has to
be redefined as

(Pilha)y = (Pilnlipa) (70)

which recovers the conventional inner product for 7 = 1 and the one discussed
previously for n = P. Based on these general arguments it was demonstrated
[97] that a Hamiltonian is pseudo-Hermitian if and only if its eigenvalues are
real or come in complex conjugate pairs, as was the observation for P7T sym-
metric potentials. With these general considerations an explanation was given
for the existence of those non-Hermitian problems which have real spectra,
but do not possess P7T invariance. In fact, the term psudo-Hermiticity has al-
ready been introduced long before the formulation of P77 symmetric quantum
mechanics [98, 99].

Since the evolution of P7 symmetric quantum mechanics is not yet fin-
ished, some recent results will be presented in subsection 3.4, in relation with
my activity in the field.
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3 Results

The relatively simple shape-invariant potentials have already been analyzed
thoroughly in terms of supersymmetric quantum mechanics and algebraic ap-
proaches, so my results in subsections 3.1, 3.2 and 3.3 concern mainly more
general potentials, or sometimes the non-standard treatment of shape-invariant
potentials. PT symmetry is a more recent subject, so there was more room for
illustrating the methods with the simple shape-invariant potentials. For this
reason most of the examples I present in subsection 3.4 are related to shape-
invariant potentials. This also holds for the examples presented in subsection
3.5, where I analyze the relation of the three symmetry concepts.

3.1 Some non-trivial solvable potentials

In this subsection I present illustrative examples for Natanzon and Natanzon
confluent potentials introduced by various methods. Some of these are “im-
plicit” potentials, i.e. the z(z) function defining the variable transformation
in terms of the method discussed in subsection 2.1 is given in the implicit z(2)
form only, while in some other cases the z(z) function is known explicitly, but
the energy eigenvalues have to be calculated from the roots of a cubic equa-
tion. Besides potentials introduced by me, I also discuss some others which I

analyze in the forthcoming subsections.

3.1.1 An “implicit” type Natanzon confluent potential: the gener-
alized Coulomb problem

The generalized Coulomb potential was introduced previously [16] as a radial
potential in three spatial dimensions, while here I discuss it in arbitrary dimen-
sions and analyze some of its specific properties. This potential contains both
the Coulomb and the harmonic oscillator potentials (of various dimensions)
as special (shape-invariant) limits, and establishes a novel type of Coulomb-
oscillator connection. This follows from the substitution of the generalized
Laguerre polynomials L{®)(z) into (6) as the F(z) special function, i.e. writing
Q(z) = -1+ (a+1)/z and R(z) =n/z [19]:

E—-V(z) = 2M(x) 3 (Z"(ff)>2 N (¢ (2))* (n+ o+ 1)  (F(@)?

22/(x) 4\ 2'(x) 2 4
_E@)? (o -1
o () i
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If we identify the third, fourth and fifth term on the right-hand side with
the (energy) constant, then we arrive at differential equations defining the
harmonic oscillator (LI), Coulomb (LII) and Morse (LIII) potentials [10, 16].
(See table 1.) The generalized Coulomb potential is obtained if the linear
combination of the third and the fourth term is identified with a constant.
Introducing for convenience the z(r) = ph(r) notation, the differential equation
defining this potential is (h')? = Ch(h+6) ', which is solved implicitly by [16]

ftanh ™" ((#) ) + (h(h + 0)):

The h(r) function maps the [0, oc) half axis onto itself and can be approximated
with h(r) ~ Czr and h(r) ~ Cr?/(46) in the r — oo and r — 0 limits,
respectively.

Adapting the notation to D spatial dimensions, the generalized Coulomb
potential is [P5]

vy = 5 (0 757) (+55) < (0-3) (03 mome oo
¢ 30 5CH

TR 10 T6(h(r) +0)2 T 16(h(r) £ 0)7

[S1E

r=r(h)= Cc 2 (72)

(73)
where the first term compensates the centrifugal term in the Schrodinger equa-
tion (with units of b =2m = 1)

(5 + 20+ 2200+ 22l v ot = Boto) - r

Hop(r) = | =32 2 2

The centrifugal term originates from the kinetic term, i.e. from the D-dimensional
Laplace operator after separating the angular variables. The bound-state wave-
functions solving (74) are normalized as

| )P =1 (75)
0

Bound states are located [P5] at

Pn (76)

where

b= ((m v+ ) 5/2)) . (77)



The bound-state wavefunctions can be written in terms of generalized Laguerre
polynomials as

Yn(r) = c%ﬁ( T(n+1) ))1/2

C(n+ 6)(2n+ 8+ pubf
< (h(r) +0)* (h(r) 7 exp(~22h(r) LD (pah(r) . (78)

Potential (73) clearly carries angular momentum dependence: its first term
merely compensates the centrifugal term arising from the kinetic term of the
Hamiltonian. Tts second term also has r~2-like singularity (due to h~'(r)),
and as it will be demonstrated later, it cancels the angular momentum depen-
dent term in the two important limiting cases that recover the D-dimensional
Coulomb and the harmonic oscillator potentials. The third term of (73) rep-
resents an asymptotically Coulomb-like interaction, while the remaining two
terms behave like r=2 and 72 for large values of 7.

These general results can readily be specialized to D = 3 and [ = 0, i.e. for the
usual Coulomb potential. The S matrix of the generalized Coulomb potential
can be derived in complete analogy with that of the Coulomb problem for
D = 3. Although this can only be done exactly for I = 0, the singular term
imitating the centrifugal term in (73) can be defined to be part of the potential.
Following the method of [101], the S matrix for | = 0 is expressed as [P5]

5., T(5+iv)
So(k) = (—1)zH1 =2 , 79
o) = (i (79
where g oik
. . q 1
1V51V(k):pz—c—p, pEp(k):—m. (80)

The extra phase factor in Sy (k) appears because of the r~2-type singular term,
which is now defined to be part of the potential. In the Coulomb limit this
expression becomes part of the centrifugal term, which is dealt with separately.

The long-range behavior of potential (73) suggests its use in problems asso-
ciated with the electrostatic field of some charge distribution. The deviation
from the Coulomb potential close to the origin can be viewed as replacing
the point-like charge with an extended charged object. The relevant charge
density is readily obtained [P5] from the potential using

() =~ dolr) (31)
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Figure 2: The generalized Coulomb potential for ¢=0.5, 1.25, 2.5; §=0.01, 0.1,
I;C=1and § =3/2. l =0and D = 3isalso implied. In each panel the largest
g corresponds to the lowest curve. Note the different scales of the horizontal
(r) and the vertical (V(r)) axes.

In figure 2 the actual shape of potential (73) is plotted for various parameter
sets. This potential is suitable for describing the Coulomb field of extended
objects. It is a general feature of potential (73) that for small values of 6 a
(finite) positive peak appears near the origin, which also manifests itself in a
repulsive “hard core”, corresponding to a region with positive charge density
[P5].

The generalized Coulomb potential is a Natanzon confluent potential by
construction, and it contains the Coulomb and the harmonic oscillator poten-
tials as special cases. This is also reflected by the structure of the function
h(r) in (72): when h(r) is proportional to r and r?, one obtains the Coulomhb
problem and the harmonic oscillator potential, respectively. These limits can
readily be realized by specific choices of the parameters in (72): the first one
follows from the § — 0 limit [16], while the second one is reached by taking
§ — oo, while keeping C/f = C' constant [100, P5].

Besides taking the # — 0 limit, the Coulomb problem in D-dimensions is
recovered from (73) by the § = 21+ D — 1 and C~3q = Ze2, choices: the
third term of (73) becomes the Coulomb term, the fifth one vanishes, while
the other three all become proportional with r=2 and cancel out completely.

In order to reach the oscillator [P5] limit one also has to redefine the po-
tential (73) and the energy eigenvalues by adding ¢/6 to both. This choice
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simply represents resetting the energy scale: E = 0 corresponds to V(r — o0)
for the Coulomb problem, and to V' (r = 0) for the harmonic oscillator. (Note
that the energy eigenvalues also have different signs in the two cases.) Besides
C/o = C, the § = q/0* parameter also has to remain constant in the § — oo
transition here. The potential thus adapted to the harmonic oscillator limit

reads

V(r) = V(r)+qf =

-2 (25 (- - D s

0
gh(r) 3C 1 53¢ 1
T+ 50 160 (1 4 H0\? 160 (15 A0
o () )

(82)

The harmonic oscillator potential is recovered from (82) by the § =1+ D/2
and C'§ = w? choice. The two last terms in (82) vanish, the first and the second
cancel out, while the third one reproduces the harmonic oscillator potential.
The new form of the energy eigenvalues is

E,=E,+q/0=C(2n+ ) (%(n+§)2+g>§—é(n+§) , (83)

which indeed, reduces to the E, = (2n + | + D/2)w oscillator spectrum in
the § — oo limit. The wavefunctions (78) are unchanged, except for the
redefinition of the parameters.

Note that the generalized Coulomb problem establishes a link between the
Coulomb problem and the harmonic oscillator potential in different spatial
dimensions. This is best seen by inspecting the wavefunctions (78). If the
(8 — 1 parameter of the generalized Laguerre polynomial is required to be
the same in the two limits, we get an interrelation between the value of the
angular momentum and the spatial dimension to be used for the Coulomb and
the harmonic oscillator case:

DO
zo+7:210+D0—1. (84)
Considering [0 = 2/¢, (84) implies D® = 2D — 2 which establishes link
between the (DY DY) =(2,2), (3,4), (4,6), (5,8), ... etc. pairs. (Of these

the (3,4) pair corresponds to the Kustaanheimo-Steifel transformation [102].)
This case is called the “direct map” between the Coulombic and oscillator
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solutions in [103], while with the /9 = 21¢ 4+ X\ choice the “general map” can
be recovered. These results suggest that the generalized Coulomb potential
can be used to formulate a continuous transition between the Coulomb and
harmonic oscillator potentials, as opposed to the usual procedure that employs
a unique variable and parameter transformation to reach this goal.

The formalism developed previously is valid for D = 1 too, nevertheless,
some particular properties of one-dimensional problems justify a separate treat-
ment of this case [P5]. First, the implicit definition of the h(r) function in (72)
has to be extended to negative values of r, which we now denote with x. Using
the notation of (72), we can write that x = r(h) for x > 0 and x = —r(h) for
x < 0. The normalization of the wavefunctions in (78) also has to be modified
with a factor of 2-'/2, accounting for the fact that the integration now runs
from —oo to oo.

For one-dimensional problems it is natural to set [ to 0 besides D = 1,
which eliminates the centrifugal term in (73). Furthermore, in order to avoid
r~2-like singularities at z = 0 the second term in (73) also has to be canceled by
setting (3 either to 1/2 or to 3/2. Elementary calculations show that the latter
choice corresponds to bound-state wavefunctions that vanish at z = 0, and
essentially represent physical solutions of the problem in higher dimensions as
well, while the former choice recovers solutions that do not vanish in general
at x = 0. These two possibilities can naturally be interpreted as odd and even
solutions of the one-dimensional potential problem. Furthermore, for x > 0
the two types of wavefunctions can be rewritten into a common notation (up
to a sign) by making use of the relation of generalized Laguerre and Hermite

polynomials, when the former ones have o = 1/2 or @ = —1/2 as parameters
[19]:
Ot
- ip
oy ) = 9 :
2V (PEEOC(F + 1)(N + 5+ 0p )

For x < 0 the bound-state wavefunctions satisfy

(86)

N

SOy — { Uy~ (@)  for N=2n (8 =3)
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In (85) we defined py as

[N

1 1 q0 1]
= ||(N+2)P+4=] —(N+=
PN =g [<( + 2) + C’) (N + 2)J ; (87)
which reduces to PIX); where even and odd values of N have to be chosen with

= 1/2 and 8 = 3/2, respectively, and the integer part of N/2 corresponds to
n used in p, in (77).

An interesting aspect of this potential is that it remains finite at x = 0
(V(0) = —q/0 + C/(80%)) for any finite value of @, however, a narrow, finite
peak appears in the # — 0 limit, which then becomes an attractive —3/(16r~2)-
like singularity in the Coulomb limit. This is due to the fourth term in (73) and
it corresponds to a “weak” singularity in the sense that the center of attraction
is not strong enough for the particle to become infinitely bound [104]. This
finite barrier arising for small, but finite # values also introduces the possibility
of studying tunneling effects in symmetric potential wells. We also note that
besides being finite at x = 0, potential (73) has continuous derivative there,
as can directly be verified.

Based on these features the D = 1 version of potential (73) can be used to
analyze the peculiarities of the one-dimensional Coulomb potential defined as
V¢ = —e?/|z|. This problem has been the subject of intensive studies in the
past couple of decades, but there is still some controversy in the interpreta-
tion of the results (see e.g. [105] for a recent review). The unusual features
attributed to this singular problem include degenerate eigenvalues [106] inter-
preted in terms of a hidden O(2) symmetry [107], an infinitely bound ground
state [106] and continuous bound-state spectrum [108]. The last two of these
were later found to be based on unacceptable solutions of the Schrodinger
equation [109, 110], while the unexpected degeneracy was explained by an im-
penetrable barrier at x = 0, which separates the problem into two disjoint,
non-communicating systems with identical energy spectra [110] and makes
even the concept of parity obsolete here [111]. Most authors discussing the
one-dimensional Coulomb problem agree that the usual techniques of quan-
tum mechanics alone in dealing with potentials are not sufficient in this case.
In [112] for example self-adjoint extension of the relevant differential operator
has been discussed.

The one-dimensional version of potential (73) can be chosen in such a way
that it becomes close to non-singular potentials used in the approximation of
the true one-dimensional Coulomb potential. In fact, with appropriate choice
of ¢ and 6 any desired Coulomb asymptotics and V' (z = 0) value can be gen-
erated. Figure 2 shows potentials with rounded-off shape near x =0 (§ = 1,
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q = 0.5) and also ones close to the Coulomb potential with a cutoff —e?/(|z|+a)
(0 =1, g =2.5). In contrast with these modified Coulomb potentials, all calcu-
lations can be performed exactly with (73). In the # — 0 limit the generalized
Coulomb potential recovers the one-dimensional Coulomb potential supple-
mented with the —%x_g term. This means that the one-dimensional Coulomb
potential cannot be reached exactly, nevertheless, reasonable approximations
of it can be given.

The odd solutions, of course, vanish at x = 0, while the even solutions
have non-zero value there as long as 6 > 0 holds. In the § — 0 limit 1/)](5::22(0)
varies with 6'/*, so the even solutions also tend to zero at z = 0. This is
in accordance with the behaviour of “weakly attractive” vyr~2 type singular
potentials on the half line: for —i < v < 0 both independent solutions vanish
at the origin, so the wavefunctions are necessarily zero at » = 0. If we try to
extend the N = 2n solutions (85) in the # = 0 Coulomb limit to the (—o0, 0)
domain we find that due to their 2'/* type behavior at the origin the derivative
of an even wavefunction would not be continuous anymore.

The reflexion and transmission coefficients can be analyzed using the asymp-
totic behavior of the general solutions of the one-dimensional problem. These
can be chosen to be even and odd functions of . The even and the odd so-

lutions can be defined for z > 0, setting 3 = 1 and %, respectively; and their

extension to z < 0 can be given using a formu12a similar to (86). The two solu-
tions are interrelated by equation 6.3(3) of [114]. Due to the symmetric nature
of the one-dimensional potential (V' (z) = V(—x)) it is enough to analyze the
asymptotic behavior of the solutions for + — oo: the x — —oc case follows

naturally. Straightforward calculations show that the reflexion coefficient is

e /4 (T(L +iv) .F(%Jril’)) (88)

) =5 (i -
Strong reflexion is found for potentials having a (finite) barrier in x = 0 (like
those in figure 2 with # = 0.01), while more regular shapes (like that in figure 2
with # = 1 and ¢ = 2.5, for example) give weak reflexion. Our findings seem to
support the existence of the space splitting effect [111] valid for the Coulomb
potential on one dimension [P5].

Besides its mathematical aspects the one-dimensional Coulomb potential has
physical relevance too, in the description of the hydrogen atom in strong mag-
netic field [115], for example. In such practical calculations it is reasonable to
use a non-singular Coulomb-like potential instead of the true one-dimensional
Coulomb potential: the finite size of the nucleus can be a justification for this.
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This means that the one-dimensional Coulomb potential might not be suffi-
cient in such calculations: the basis defined with it simply does not contain
even-parity states. In practical calculations therefore the use of bases like that
assigned to the generalized Coulomb potential is necessary.

3.1.2 Some “implicit” type Natanzon potentials

Here T mention some specific features of Natanzon potentials constructed by
me, and also describe briefly some known ones which I am using in subsections
3.2 and 3.3. Natanzon potentials can conveniently be generated in terms of the
transformation method discussed in subsection 2.1 by identifying F'(z) with a
Jacobi polynomial: F(z) = P{®%(z). Equation (7) is an explicit form for
E — V(z) in this case:

E-V() = Z"'(g”)—g(z"(m)) MECIL AR A

22! (x) 2! (x) - zQ(m)n
(#'(=)* 1 1 2
+(1 — 22(2))? {i(a +h+2) - Z(ﬁ o) }
(2'(2))*2(x) 1
+(1 _ ZQ(LE))Q i(ﬁ - O‘)(ﬁ+ CY)
(

(89)

As discussed in [10], one selects differential equations of the type (9) for z(z)
to get constant terms on the right-hand side of (89). In [10] the first two non-
trivial terms were picked, leading to the PI and PII potential classes. The defin-
ing differential equation of these is (2')?(1—2%)"! = C and (')?(1-2%)"%2 = C.
Later in [15] the third “PIII” possibility, 2(2')%(1 — 2?)™2 = C was also dis-
cussed, resulting in an “implicit potential” with no shape-invariant limit. Fur-
ther choices of the defining (9) differential equation yields further Natanzon
potentials, and we are going to analyze some of them here. Obviously, there
can be only three linearly independent terms of the type (2')%2%(1 — 22)? (89),
with k =0, 1 and 2 as the most convenient choice, so the last term in (89) is
redundant. However, for convenience and later use we keep it.
Considering the differential equation [P1]

(#')%2
(1-22)(1-2)

~C (90)
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obviously corresponds to taking a special linear combination of the third and
fourth term in (89). For C'= —1 (90) is solved by the implicit

z(z) =2tan ! [(—z " = )2 — 22 tan ! [[(—2 7t = 1)/2]Y2] (91
function, which maps z € [~1,0] to the finite € [0,7(1 — 27/2)] domain.
The resulting potential

B 424422 —22—-22-5
-2 2
Viz(2)) z 1623(1 + 2) (92)

is then also defined on a finite range, similarly to the trigonometric shape-
invariant potentials. The energy eigenvalues are E, = a2 /2 — B, where B and
oy, are defined by

a2 (6% (6%
: (n+ 2><n+ - ) (93)

and the bound-state wavefunctions are
U (x(2)) ~ 21/4(1 + 2)1/4(1 — z)o‘"/QP,Ea”’U)(z) . (94)

Equation (93) requires B > —1/4.

A close inspection of the behaviour of this potential near the endpoints
reveals that it is singular and attractive, but the —v/x2-type singularities do
not belong to the prohibitive v > 1/4 domain, where the particle falls into the
center of attraction [104]. A particularly interesting case arises for B = 1/4,
when the square root in (93) disappears and the energy eigenvalues become
identical with those of the potential V(z) = ¢?s(s — 1)cosec ?(cx) — 1/4 with
s =1/2 and C = 2+ 22, This is a downward oriented symmetric Scarf I or
Poschl-Teller I potential (see table 1), which is attractive, but its singularity is
in the “weakly attractive” domain (v = 5/36), so its solutions are still physical
[116]. Therefore it can either be considered an elementary cell of a periodic
potential or a single finite-range potential, similarly to the trigonometric shape-
invariant potentials.

Finally, we note that potential (92) can be obtained from the general Natan-
zon potentials (11) by taking a; = =4, ¢; =0, ¢ = =2, f = —1, hg = 2B—3/2
and hy =1 [P1].

As another illutrative example we can choose the defining differential equa-

tion [P18] P
G S

T =C (95)
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which is solved by

2(z) =In[(1+2)F (1-2) 7] (96)
for C' = 1, which merely corresponds to setting the length scale to a particular
value. This is an implicit function mapping z € [—1,1] to € (—o0, 00), and
it resembles the z(z) = tanh x function, except that its shape is set by 7.

Rearranging the terms in (89) so that n appears only in the constant term
we find that the a and ( parameters of the Jacobi polynomials have to be
related by 6 = a(y —1)/(y + 1) unless v = 1 holds. Furthermore, o picks up
n-dependence, since it has to fulfil the condition a? = [n + y(a +n)][(n + 1 +
Y(a+n+1)] — A(y+ 1)%. Then the resulting potential takes the form

_ A=) k(1 =27 3127
B P N P R

The energy eigenvalues are E, = —a2 /(v + 1)? and the corresponding bound-
state wavefunctions become

Un(@(2)) ~ (2 4+ 7) 21 = 2)2 (1 4 2) PR () (98)
where
= [-7(2n+ 1)+ [n(n + 1) + 44(12 = 1) + 923 (207 - 1)] " = 5"1—2'

(99)
It can also be established that the number of bound states is limited by n <
—1/2+ (A +1/4)'/2, 50 it is independent of .

The potential is essentially single hole shifted with respect to x = 0, its
depth is set by A, while 7 changes its shape in such a way that making it
deeper goes with making it narrower and vice versa, in accordance with the
observation the v does not influence the number of states.

Finally, we note that potential (97) is a Natanzon potential (11) with a; =
4,1 =2 +3,c0 = (v+ 1) f = —4A, hy = hy = 1 [P18]. Tt also has
to be mentioned that radically different results are obtained for v = 1, which
corresponds to a potential discussed in subsection 3.1.3. This particular choice
of v even changes this “implicit” potential into an “explicit” one, because the
(95) differential equation becomes explicitly solvable for z.

In order to recover the Ginocchio potential [13] one can consider (89) with
« = 3, in which case the Jacobi polynomials reduce to the simpler Gegenbauer
polynomials [19] in (89) only two essential terms remain with (2’)*(1 — 22)~"
and (2/)?(1 — 2%)7% These two terms lead to PI and PII type potentials in
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table 1, but only with their restricted (symmetric) version due to the o = /3
choice. Actually, these PI and PII potentials coincide pairwise and result in
the hyperbolic and trigonometric versions of the Poschl-Teller potential hole.

The Ginocchio potential can be obtained by combining the surviving two
terms by setting [C3]

()P =C(1—-22)*0+1-24)". (100)

This contains the above two cases if 6 = 0 and § — oo is chosen (here also
prescribing C6~! — C = finite). Equation (100) is solved, for example, by
the implicit z(z) function

CZz =tan! [2(6 +1-— 22)’%] + 67 tanh ™! [6%,2((5 +1-— 22)’%] ., (101)

which, up to some variable and parameter transformation, is the equation
defining the Ginocchio potential [13]. E — V(z) in (7) now takes the form

E-V(z)=C <(n+ a)? - 4A4L3(;) 0 3(2(]\3;2;;)2) 52\4(63;;)1)) , (102)
AE(@—F%)<a—g>+6<n+a+%><n+a—%>, (103)

where we used the notation M(z) = § + 1 — 2%. Equations (102) and (103) as
well as the wavefunctions

Uale) = (0 +1-22(@) (1 - 2@)FDOP(a(x)  (104)
reduce to the corresponding ones in [13] for 6 = (A2 —1)7", C = M\ —1)7!
and @ = p 4 3. We are going to present an su(1,1) algebra related to the
Ginocchio potential in subsection 3.3.1.

Just as the Ginocchio potential [13] contains the symmetric Péschl-Teller
potential in a special limit, the generalized Ginocchio potential [14] contains
the generalized Poschl-Teller potential as a special case. The main difference
between the latter and former potentials is that the latter ones have an r 2
type singularity at r = 0 and are interpreted as radial potentials. Since we are
going to analyze the generalized Ginocchio potential in subsection 3.2.2, we
present its essential properties here and discuss it as a member of the Natanzon
potential class.

In its original formulation of the generalized Ginocchio potential was de-
fined to describe a particle with an effective mass [14]. This effective (i.e.
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coordinate-dependent) mass is clearly incompatible with the standard Schro-
dinger equation we consider, therefore here we take a special case allowing
constant mass. In what follows we parametrize the generalized Ginocchio po-
tential as
7! ) (1=
4% +sinh’u [S(S UL - 4(4% + sinh? u)?
3(1—9%)(3* - 1)

— — A\ — 1) coth? 105
4(y% 4+ sinh” u) ( ) co u] ’ (105)

Vo(r)

where we changed the notation of [14] to make it more suitable for our purposes.
This form can be obtained from the original formulae by setting a = 0 (which
cancels the effective mass term), o = A\ — %, vy =8, Bu =i, A =7 and
y = sinh u(y? + sinh?u) 2.

The (generalized) Ginocchio potential is an example for “implicit” poten-
tials, because it is expressed in terms of a function u(r) which is known only
in the implicit 7(u) form:

T =

? [tanh’l ((72 + sinh? u)fé sinh u)

+ (42 = 1)2 tan™" ((72 —1)%(y* + sinh®u) "2 sinh u)] ., (106)
which is essentially the same as (101) using the new parametrization. Now r
can take values from the positive half axis, which is mapped by the monotonously

increasing implicit u(r) function onto itself. This function is, actually, the so-
lution of an ordinary first-order differential equation

du  ~*coshu
dr (42 +sinh?u)2

(107)

defining a variable transformation connecting the Schrodinger equation with
the differential equation of the Jacobi (and Gegenbauer) polynomials. Consid-
ering the problem as a Natanzon potential, the z = cosh 2 u substitution has
to be made in (11) to (14), and this sets the a;, ¢; and ¢y parameters in (12)
toa; = (1 —9?)y™*, ¢, =0 and ¢y = y~*. Tt can be seen from (106) and (107)
that u(r) behaves approximately as yr near the origin, and as ?r for large
values of 7. In the v — 1 limit u becomes identical with r, and (105) reduces
to the generalized Poschl-Teller potential, which is in line with the fact that
in this limit a; — 0.
Bound states are located at

Bu=—'s (108)

42



where n varies from 0 to nmyax defined below and

1
2
i = % [—(271 F A+ %) + [(271 F A+ %)2(1 )+ (s + %)2}
(109)
All the terms in (105) are finite at the origin, with the exception of the last
one, which shows 7~ 2-like singularity there, and can be considered either as an
approximation of the centrifugal term with [ = A—1 () integer), or as a part of
a singular potential with arbitrary [ # A—1. Setting A = 1 we get the “simple”
Ginocchio potential [13] defined on the line, discussed also in subsection 3.1.2.
In what follows we assume that A > 1 holds.
The bound-state wavefunctions are expressed in terms of Jacobi polynomi-
als

S (r) = N (42 + sinh? )7 (sinh u)* (cosh u)’“"’A’%PTEMn’/F%) (2tanh?u — 1)
(110)
which reduce to Gegenbauer polynomials for A = 1. The normalization is given
by 1
N = 290! D(ptn + A+ 0+ 3)pn(pn + A +2n+3) 1°
" T (A DTN+ 0+ D) (g + A +2n + 1)

(111)

Considering that the r — oo asymptotical limit corresponds to u — oo (see
(106)), the wavefunctions become zero asymptotically if y, > 0 holds. Apply-
ing this condition to (109) we find that the number of bound states is set by
Nmax < 5(s — A).
Later on we shall use the Jost solutions with potential (105) satisfying [131]
FI5U (k1) =00 i Lexp(ikr) . (112)

They can be expressed in terms of the two linearly independent solutions for
arbitrary energy E = k? and can be written as

F3o5t(k, r) = exp(ikr;)(y? + sinh? u)%(—i sinhu)!*(cosh u)*“(k)“\*%

xF(%(u(k)—AJra(k)JrQ) L (u(k)—A—U(k)Jrl);M(k)Jrl; %) , (113)

"2 cosh® u
where . |
o(k) = =5 + [P (K) (1 =) + (s + 5)°] (114)
(k) = 2 (115)



and
r = %[(v? — 1) tan”! (72 = )7 ~In(3)] (116)

as in [14]. The Jost solutions allow expressing the Jost function as

o=

Fo(k) = ( B g))\—lﬁ TIIL% (T,\flff]]ost(k_’ 7,))

NO|—

_ (- ﬁ)/\—l 73y A3 exp(ikr)T (1 + (k) )
27 D (3(uk) + 2 = o (k) )T (5(u(k) + A+ o (k) + 1))
(117)

This provides the S-matrix as

a1 Fo(—k)

So(k) = exp(2ido(k) = (~1)* o

(118)
which, together with the substitutions discussed previously, gives the result
of [14], up to a (—1)" phase. This difference is due to the fact that, for the
definition of this S-matrix, we consider here that the Ginocchio potential is a
singular potential in the [ = 0 partial wave, rather than a regular potential in
the [ = A — 1 partial wave. This is quite natural since we allow here A to be
non integer. This convention also explains the unusual factors of (112), of the
first line of (117), and of the definition of the S-matrix in terms of the Jost
function in (118), as explained in [131]. As can be verified by equation (118),
the S-matrix tends to 1 for k¥ — 0, and to explir(1 — )] at infinity. This is
in accordance with the Levinson theorem, generalized for singular potentials
1],

50(0) = 80(00) = (s + 1+ 25 ). (119

3.1.3 A Natanzon potential from a point canonical transformation

We start with presenting the potentials introduced by Dutt et al. [23] as
conditionally exactly solvable (CES) models. The two potentials defined on
the full axis © € (—o0, 00) can be written in a common form as

V(0091.92.99) () — 90 g, 9 J3 120
(=) e z(x) * z(x) * 2%(x) * 24 ()’ (120)

with z(z) = (1 +e72)1/2 € (1,00). The explicit form of these potentials [23]
is

‘/I(DKV) (.ZU) — V(O,—B,A,—3/4) (.CU), ‘/Z(DKV) (ZL') — V(—B,O,A,—3/4) (.ZU) . (121)
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These potentials depend on two parameters (A and B) which define the poten-
tial shape. The coupling constant of the third potential term has to be fixed to
a constant value (—3/4) in order to obtain exact solution of these models. This
is why the authors of [23] identified these potentials as conditionally exactly
solvable (CES) ones.

One can easily demonstrate that the two potentials, in fact, are equivalent
[P11] in the sense that

V(U,fB,A,73/4)(x) _ V(*D,U,C,*3/4)(_x) +e, (122)

where

e=—A+3/4, C=-A4+3/2, D=B. (123)

Thus, in what follows it is sufficient to deal with only one of the potentials, so
we pick VI(DKV)(:E) for our analysis [P11].

In [23] potentials (121) were introduced using the point canonical trans-
formation method [117], by which a Schrédinger-type differential equation
can be transformed into another equation of this type, applying an invert-
ible parametrization r = r(z). With this change of variables, dating back to
Liouville [118] a given asymptotically free equation

-~ U0 1) = =0 (121)
can be transformed into an apparently different bound state problem
d2
- V)| v = R ) (125)

After we denote the derivative by a prime (z2/(r) etc.), an elementary cor-
respondence between the potentials and/or energies is obtained,

Ur) + k* = [x'(r)]2 (V(x(r)) + k2) + (221”((:))> — %ZI:I((:)) ) (126)

Obviously, the “old” energy eigenvalues are related to the parameters of the
“new” potential, and vice versa. The formal definition of the new wavefunc-
tions is also virtually trivial,

¥lz) = 2 (r(@)]"* x(r(x)) - (127)

In any situation of practical interest one may just pick a suitable exactly
solvable (ES) problem (124) and derive quickly its partner (125). Setting out
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from two shape-invariant [18] ES potentials defined on the positive half axis,
Dutt et al. [23] used the variable transformation z = In(sinhr) to obtain
potentials (121). The particular initial potentials and their energies were
cosh r 1 9 9

—1 = = 24 p? 2 (19
sinhr+a(a )sinh2r’ K K,, = (a+n)*+b°/(a+n)* (128)

(with b > (a + nmay)?) and

Ui(r) =—2b

h 1
Ua(r) = —2a+ 1)b o™ 4 fa(a+1) + 82—, &= w2 = (a—n)?
sinh” r sinh* r
(129)

(with b > @ > nmay). This can be recognized as the Eckart potential in table
1.

Recalling the bound-state wavefunctions of potentials U;(r), the solutions

to potentials Vj(DKV) (x) in (121) readily follow from (127). Without the loss
of generality we can consider the j = 1 case and recall the solutions of U;(r)
(see e.g. [10, 3]) in terms of Jacobi polynomials,

x(2) = (2 — 1)—%(a+n—s)(z + 1)—%(a+n+s)Prg—a—n+s,—a—n—s)(z)’ s=b/(a+n)

(130)
with 2 = z(r) = cothr. Using this function in (127), substituting it into
the Schrodinger equation and matching parameters a and b with A and B of
VI(DKV)(m) in (121), we find B = 2b and

A=n>+1/2+ 2n+1)a+b*/(a+n)> (131)

This equation will ultimately determine the energy eigenvalues through a cubic
equation of quantum number 7, as described also in [23].

Let us now continue with the analysis of the energy eigenvalues based on
the formula (131). The key element of our approach is the strict observation
of the constraints imposed on the parameters by the boundary conditions of
the wavefunctions. By this we mean both the solutions of the “old” potential
Uy(r) (128) and those of the “new” one V"XV (z) (121).

The appropriate physical boundary condition for (130) near the threshold
r — 0 implies that we have to choose a > 1/2. Then, after the transition
from r to x we get the wavefunctions still safely normalizable near the left
infinity x — —oo. Similarly, our explicit wavefunctions remain asymptotically
normalizable near the right infinities » — oo and * — 4o if and only if
we have a +n < b/(a + n). This means that the eligible quantum numbers
n=20,1,..., M have to be such that 0 < M < b'/? —q, i.e.,

(n+1/2)* < (a+n)* <b. (132)
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Without presenting the details, we just state the main result of the analysis
given in [P11] regarding the choice of the physical solution of the cubic algebraic
equation (131): the general rule is that always the middle root is the physical
one.

Let us now turn to the interpretation of the potential V"% (x) in (122).
Obviously, the transformation employed in [23] (i.e. the point canonical trans-
formation [117] or the Liouvillean method [118]) is a special case of the trans-
formation method [9, 10] presented in subsection 2.1. Taking

Q(z)=0, R(z) = —k*-U(2), (133)

Equation (7) reduces to the inverted version of (131) (with r and —&? there
replaced with z and F here). Similarly, (8) also reduces to the equivalent of
(127), where x(r) is playing the role of F(z). From this it is clear that in
contrast with the claim of the authors of [23], the potentials in (122) should
be referred to as Natanzon-class potentials, rather then CES ones.

The approaches applied in [9, 10] (reviewed in subsection 2.1) and in the
point canonical transformation [117] emphasize somewhat different strategies
of deriving solvable potentials within the Natanzon potential class [8]. In
[9, 10] the main point is to identify some term on the right-hand side of (7),
to account for the constant (i.e. the energy) term on the left-hand side. With
this, a differential equation of the type (9) is obtained, and this determines the
function z(x) describing the variable transformation. In some cases the z(z)
function could not be determined explicitly from (9), only the inverse z(z)
function, therefore a number of solvable models obtained this way turned out
to be “implicit” potentials. On the other hand, following the point canonical
transformation method [117], the z(z) function is always available in an explicit
form, however, it is not guaranteed that any z(z) function would lead to a
Schrodinger-like equation in which all the n-dependence can be absorbed into
the constant (energy) term. Equation (131) might turn out to have Sturm-
Liouvillean form, where n typically appears in coordinate-dependent terms.
Simply stated, the approach of [10] focuses on having the energy in a simple
form, even on the expense of leaving the solutions in a complicated (implicit)
form, while in the point canonical transformation the preference is having the
solutions in an explicit form, rather than getting the energy expression in a
simple way. We stress that despite this difference, the two approaches are
interrelated, and are special cases of deriving Natanzon-class potentials.

Let us now see how potential Vl(DKV)(:U) in (121) can be obtained from the
method described in subsection 2.1. The choice of

()1 -2)r=C (134)
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in (89) was not discussed in detail in [10], only the generic form of the so-

lution was mentioned. However, it turns out, that the function z(z) = [1 +
exp(2C"/?z + D)]'/? satisfies (134), and it leads to the same variable transfor-
mation as that discussed in [23], if the C'/2 = —1 and D = 0 choice is made.

The actual form of (7) is now

atf+1\",
2

<n+ %ﬁ“f - (O‘;ﬁf _ % _ i(ﬁ—w] 22(z) . (135)

This leads to a solvable potential if the n-dependence can be canceled in the
coordinate-dependent (i.e. potential) terms by a suitable change of the param-
eters. Comparing (135) with (121) we get

B, - V(x):—<n+

_|_

A:—[<n+%ﬂ+l>2—<a2ﬁ>2—2—%(ﬂ—a)2] : (136)
B=3(B-a)f+a), (137)
" E, =— <n+ %ﬁﬂy . (138)

Obviously, @ and § depend on n and also on the potential parameters A and
B. Substituting (138) in (136) and combining it with (137) we arrive at (131),
the equation defining the energy eigenvalues.

The bound-state wavefunctions are found to be

V(@) ~ 22 (@) (2(x) + 1) (2(2) = 1) 2P (2(a) (139)

which (apart from some misprints), corresponds to equations (15), (16) and
(18) in [23], if we substitute oy, = B/(2¢) — ¢ and (3, = —B/(2¢) — c.

Finally, it is worthwhile to analyze this potential in terms of the formalism
of Natanzon potentials, as discussed in subsection 2.1. It is particularly in-
structive to examine the role of the 343 parameters appearing in the Natanzon
potentials, as it is related to the concept of conditionally exact solvability. For
the most commonly occuring potentials (like the shape-invariant ones [18]),
the three parameters determining the z(x) function via (13) and (12), usually
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only one appears, and even that one is a trivial scaling parameter of the co-
ordinate and/or the energy scale. (Trivial coordinate shifts can also appear
through them.) Usually they play a non-trivial role only in the case of some
“Implicit” potentials [13, 62, 119, 16, P11]. In the present case the differential
equation (134) corresponds to taking a; = 4¢; = 4¢g = 4/C, and on this basis
we can identofy the V;”*")(z) potentials with those dicussed in [17].

The other three parameters appearing in (11) set the potential shape, and
determine the relative strength of the individual potential terms. In most
potentials only one or two of these parameters appear. The two parameters
appearing in potential (121), A and B are of this type. (There could be
one more parameter setting the length scale, but it is set to 1 in this case.)
Obviously, when there are three potential terms, as in (121), and only two
parameters, then the relative strength of the three potential terms cannot be
arbitrary, and has to be constrained. This is why the third term of (121) is
a numerical constant, i.e. —3/4. It is the presence of this numerical constant
which earned potentials in [22, 23] the name “conditionally exactly solvable”.
In fact, based on the structure of their eigenfunctions, the potentials appearing
in [23] are of the Natanzon type [8], while those in [22] belong to the Natanzon
confluent class [12]. There are, however, further considerations regarding nor-
malizability and regularity, which might impose restrictions on the solvability
of certain potentials. Not surprisingly, these may play a more important role
in the case of the less “trivial” potentials [120].

3.2 Supersymmetric quantum mechanics

This subsection is divided into three parts containing results from three fields:
single and iterated SUSYQM transformations, as well as the generalization of
the factorization technique to spin degrees of freedom.

3.2.1 Single supersymmetric transformations

Here we discuss conditionally exactly solvable (CES) potentials generated from
supersymmetry as the supersymmetric partners of some simple potentials [121,
122]. The CES nature of these potentials hinges on the question whether the
parameters of their partners can be chosen in such a way that they can be
reduced to some simple potential with known solutions and energy eigenvalues.
According to the techniques of supersymmetric quantum mechanics, the CES
potentials constructed in this way are then essentially isospectral with their
partners, i.e. the two spectra are identical or differ only in their ground state.
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The bound-state solutions of CES potentials are obtained from those of their
simple (Natanzon-type) partner potentials by acting on these latter ones with
linear differential operators. In [121, 122] some CES potentials have been
constructed by SUSYQM. Here we show that this procedure can be made more
systematic by making use of various types of SUSYQM transformations [P7].
The rather general nature of this treatment allows the recovery of known results
and also the derivation of new CES potentials in the same framework. Our
examples concern CES potentials related to the harmonic oscillator potential in
three or one dimension (the standard examples of [121, 122]), but the formalism
is equally applicable to other types of potentials as well.

Let us start with presenting the conventional SUSYQM approach to CES
potentials [121, 122]. Let us assume that there is a pair of SUSYQM partner
potentials Vj(EO)(r), which can be constructed from a superpotential Wy(r) in
the usual way:

VO (r) = W2(r) £ Wy(r) . (140)
Consider now a superpotential of the form
W(r)=Wy(r)+w(r) . (141)
The partner potentials generated from W (r) are then
Vi(r) = VO r) + 2Wo(r)w(r) + w?(r) + w'(r) (142)

V_(r) = VO®r) + 2We(rw(r) + w?(r) — w'(r) . (143)

Let us now insist on that one of these potentials, say V() is related to some
known potential up to an energy shift. In the simplest case this could be
V() in (140):

Vi) =VO@r) + A (144)

Combined with (142), this requirement immediately introduces a Riccati-type
differential equation for w(r):

w?(r) + w'(r) + 2Wo(r)w(r) = A . (145)

If this equation is solved, then a pair of SUSYQM potentials is obtained, from
which one of the partner potentials, V. (r), corresponds to a known potential
(up to an energy shift). Therefore, both the spectrum and the wavefunctions
of the partner potential V_(r) can be obtained in the usual way.
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In the examples in [121] VJEO)(T) was the harmonic oscillator potential in
1 and 3 dimensions, with Wy(r) being the corresponding superpotential. In
both cases the structure of w(r) was of the type

N

w(r) _ Z 2g;r

= 1+4gr?

(146)

In the practical examples N=1 was used.

Let us now present a more general alternative SUSYQM construction of
CES potentials. As discussed in subsection 2.2, a potential V;(r) isospectral
with a known potential V;(r) can be constructed by (44), where ¢(r) is a
solution of the Schrodinger equation with potential Vj(r) and € is the factor-
ization energy. Depending on the value of € and the boundary conditions of
the solution ¢(r), Vi(r) in (44) will have various properties. As discussed in
subsection 2.2 (see table 2), for a radial problem (in three-dimensions) four
types of transformations are possible. These are related four different types of
nodeless solutions ¢(r) of the Schrodinger equation. The nodelessness of ¢(r)
guarantees that the resulting potential V;(r) does not have singularities for
finite values of r (besides the origin), and this can be achieved whenever the
factorization energy € is below the ground-state energy of Vg(r) [36].

Let us consider the radial harmonic oscillator as an example and solve the
Schrodinger equation for ¢(r) with

Vo(r) = V%) = Wi(r) +W(r)

1
— r2+7(77j)+27+3. (147)
r
Here the superpotential is Wy(r) = r + (v 4+ 1)r !, and the bound states of
Vo(r) are found at E,, = 4n + 4y + 6. The solution ¢(r) can be searched for in

the form B
o(r) ~ rexp <5T2) F(a,b;Cr?) , (148)

where F'(a, b; z) is the confluent hypergeometric function [19]. Straightforward
calculation shows that the Schrédinger equation transforms into the confluent
hypergeometric equation if the following conditions hold:

AA-1) = y(v+1), B*=1, B=-C; (149)
1
b= A+ (150)
3 A 1
o« = —— 4L+ i (151)



Recalling that besides F'(a,b; z), 2! °F(a—b+1,2—b; 2) is a linearly indepen-
dent solution of the same confluent hypergeometric function [19], the general
solution ¢(r) has the form

B,

3 3 3
~ - 7+1Fi i 7 1 e _,02
o(r) eXp(fﬂalr Getactic Tt o)

€ 1 1
+0527A7F(%+%+%_%+Z,_’Y+§;CT2) . (152)
Note that the two terms in (152) are connected by the v <» 1 — « transfor-
mation, therefore it is enough to consider one of the solutions (A = v+ 1 or
A=—v)of A(A—1)=~(y+1) in (149). The solutions corresponding to the
transformations 717, T5, T3 and T} in table 2 can then be identified by imposing
the appropriate boundary conditions on ¢(r).

Substituting the ¢(r) function in (44) one obtains an expression for Vi (r) in
terms of ¢'(r) and ¢"(r). Ultimately Vi (r) can be expressed in terms of Vy(r),
e and ¢'/¢. In this last expression the first-order derivatives of two confluent
hypergeometric functions occur, each of which can be expressed in terms of
another confluent hypergeometric function [19]. This means that V;i(r) can
be expressed in a somewhat complicated, but closed analytic form. A special
situation occurs when a = —N or a — b+ 1 = —M holds. In this case one of
the confluent hypergeometric functions occuring in (152) reduces to an N-th or
M-th order (generalized Laguerre [19]) polynomial of the argument. According
to (151), this case corresponds to specific choices of the factorization energy
€. Let us now consider the four transformations 77, T,, T5 and T, one by one
[PT7].

We first note that the boundary conditions require as = 0 in the T} and T;
cases, while in the T5 and T} cases both a4 and «s are allowed, and their ratio
appears in Vi (r) as a new parameter. However, for simplicity we consider only
a1 = 0 in the T3 and T} cases and also reduce the remaining confluent hyper-
geometric function to an N’th order polynomial by setting its first parameter
to —N. With these choices V;(r) can be written in a compact form:

1) +24 2 1
vy +1)+ +27+3—2B—2%lnF(—N,A+§;CT2)- (153)

Vi(r) =71+

72

The solutions relevant to the Ty, T, T3 and T} cases can then be obtained by
substituting [A, B,C] = [y+1,-1,1], [-7,1,-1], [y+1,1,—1] and [—v, —1, 1],
respectively. In the N = 0 case the last term in (153) cancels and V;(r)
contains only terms characteristic of the three-dimensional harmonic oscillator

52



potential. For N =1, F(—1, A+ 4;Cr?) = 1+ gi72, with g; = —2C/(24+1),
which gives rise to two new terms [P7]

Y(y+1)+2A4
7"2

8gir° 41

Vi(r) =r’+ - -
1(’/“) " (1 + 917“2)2 1+ 917"2

+2y+3-2B+

(154)

In the 77 case A =~v+1, B= —1 and C' = 1 has to be taken. The a = —N
condition leads to € = 4N + 4 + 6. This factorization energy corresponds to
the bound-states energies of Vy(r) = VJEU)(T) and ¢(r) simply reproduces the
physical wavefunctions. However, only the n = 0 ground-state wavefunction
is nodeless, so only this can lead to singularity-free V5(r). Therefore the T;
transformation simply retrieves the classic SUSYQM transformation which
eliminates the ground state of V;(r) and increases the value of v with one unit.

In the T3 case the appropriate choice is A = —vy, B =1 and C' = —1. The
a = —N polynomial condition then leads to the specific factorization energies
¢ = —2N, which are always below the ground-state energy of V4(r), so the
nodelessness of ¢(r) is always secured. The N = 0 choice recovers Vi(r) as
another oscillator with the same spectrum as Vi(r): only the value of v is
increased with one unit and the energy is shifted downwards with two units.
The N = 1 case results in the CES potential described in [121] (denoted by
V_(r) there) up to an energy shift. Similar, but more complicated isospectral
potentials would arise from choosing N > 1.

In contrast with the previous two cases, for the 7, transformation the
boundary condition at the origin now allows both the regular and the singular
solution in (152). Similarly to the T3 case, the Ty one is usually also interpreted
as a situation with broken supersymmetry, because the spectra of the partner
potentials (and, of course, of the whole family) is identical. Simplifying the
problem by considering only a; = 0 in (152) we get the resulting potential
from (153) with A = —y, B= —1and C = 1. The a—b+1 = —N polynomial
condition now leads to factorization energies ¢ = 4N + 4. The N = 0 choice
again results in another harmonic oscillator potential, with v decreased with
one unit and with an energy shift of two units upwards. For N = 1 a potential
similar to that in [121] arises, whenever v > 1/2 holds. (As we have mentioned
already, this latter condition secures that the polynomial F'(—1, —v + % r?) =
14272 /(2y—1) remains nodeless, and there will be no singularities in the V;(r).
In fact, the 4y +6 = E; > ¢ = 4N + 4 condition also leads to v > 1/2 for
N = 1.) Similarly to the T; case, further potentials isospectral with a harmonic
oscillator can be constructed by choosing N > 1, but the nodelessness of ¢(r)
has to be checked in each case.

In the T;, case the A = —vy, B = —1 and C' = 1 choice has to be made,
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and the situation is the same as in the T; case: both the regular and the
singular solutions are allowed by the boundary condition at the origin. This
means, that we again have a whole family of potentials V5(r), which have the
same spectrum and differ only in their shape. As before, we again restrict to
a1 = 0 and consider the polynomial condition a — b + 1 = — N, which leads
to e = —4N + 4y + 2. For N = 0 V,(r) is an oscillator with ~ replaced with
v — 1 and shifted lower with two units. Clearly, this corresponds to the usual
SUSYQM transformation which inserts a new state (at E = 4y + 2) below the
ground state of V4(r). For N =1 we find that the potential (154) is nodeless
only if v < 1/2 holds. For N > 1 we have to check the nodelessness of ¢(r) in
each case, because it cannot be automatically guaranteed after we restricted
the general solution by selecting oy = 0 in (152).

The relation of the two procedures outlined above can be interpreted in a
simple way by noting that the partner potentials are linked by V. (r)—=V_(r) =
W'(r) and Vy(r) — Vi(r) = (In¢(r))". From this

W(r) = (Ing(r)) + ¢ (155)

follows. Direct integration of (141) and (146) with Wy(r) =r + (y + 1)r~!, as
in [121] and ¢ = 0, indeed, recovers the general solution ¢(r) specific to the T3

case:

7“2

P(r) ~ " lexp ( 5

o+ ). (136)
In addition to the notation of [121], go = 0 was also introduced for convenience.
This function is also an N’th order polynomial, as expected from (148) for
a=—N.

Finally, we note that further single SUSYQM transformations are discussed
in subsection 3.5, where the interrelation of different symmetry concepts is
analyzed.

3.2.2 Combined supersymmetric transformations and phase-equiv-
alent potentials

Analytic exploration of phase-eqivalent complex potentials

It has been known for a long time that the interaction of composite nuclear
objects can be described with potentials essentially differing in their shape and
depth. In particular, it was known that a “deep” and a “shallow” family of po-
tentials can account for the same phase shifts. This duality of deep and shallow
potentials describing the interaction of composite nuclear systems (clusters) is
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understood qualitatively on the basis of the Pauli principle [123]. According
to this, states with low node number in the relative motion are discarded for
deep potentials on grounds that they would correspond to states in which the
nucleons of the different clusters occupy the same state of the compound nu-
cleus. In shallow potentials, on the other hand, the Pauli principle is taken
care of by a repulsive core, which prevents the two clusters from getting too
close to each other.

For real potentials, the apparent difference between deep and shallow po-
tentials can be exactly eliminated by constructing phase-equivalent potentials
[37]. Indeed, supersymmetric transformations [36], which are based on a factor-
ization of the Hamiltonian, allow to construct potentials which provide exactly
the same phase shifts as a given potential [37, 124, 44, 43, 45]. Deep poten-
tials can be transformed into equivalent shallow potentials by removing their
unphysical bound states. The resulting shallow potentials display a singular-
ity at the origin which is unavoidable according to the generalized Levinson
theorem [41]: the variation of the number of bound states is compensated by
the singularity in order to keep a constant difference of phase shifts between
zero and infinite energies. As a consequence, the resulting shallow potential
usually depends on the angular momentum.

However, realistic heavy-ion collisions are not restricted to a single channel.
In order to take absorption into account, complex optical potentials need to
be used [76]. Is it possible to transform a complex potential with a deep
real part into potentials with a shallow real part and to maintain the phase
shifts in the process, similarly to real potentialsI' To answer this question one
has to venture into largely unexplored territories. The main difficulty here is
finding normalizable solutions of complex potentials. Several questions arise.
How many normalizable solutions can one find for a given complex potentiall’
Which types of square-integrable solutions exist in a general casel’ Can any
of them be removed and should it be donel' Indeed it is known that the real
part of their energy is not necessarily negative [125]. This new type of ”bound
state” has no clear physical meaning. Do the normalizable solutions present
nodes and, if so, does it matterl’

In [P3] these questions were addressed, and phase-equivalent complex po-
tentials have been constructed numerically. In order to aid the numerical
studies, the exactly solvable complex Poschl-Teller potential was also studied
[P3], in the hope that potentials that have similar shape would lead to similar
results using numerical techniques.

Before turning to the particular potential itself, it is worthwhile to summa-
rize what one can know about normalizable solutions in a complex potential.
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Consider the Schrodinger equation

(_dd_ LU+ iW(?“)) ¥(r) = By(r) (157)

with the condition W(r) < 0 and assuming that the real part U(r) includes
the centrifugal term.

We are interested in normalizable (or square-integrable) solutions of (157)
with the boundary condition ¢(0) = 0. The corresponding complex eigenvalues
E are parametrized as F = —x? with k = |k[e’®, where =57 < a < I, so that
Rex > 0. For a potential decreasing fast enough, the asymptotic behaviour of
a normalizable solution is

Y —  exp(—kr), (158)

T—00

corresponding to an exponentially damped oscillation. When V' (r) behaves as
a Coulomb potential at large distances, this exponential is multiplied by some
(possibly complex) power of r.

The normalizable solutions of (157) and their energies E verify some simple
general properties. One easily shows [125] that

Io® W)FWdT
ImFE =—F%——7—
Jo W‘er

Hence the existence of a minimum Wy, for W (r) and the condition W (r) < 0
lead to bounds for the imaginary part of the complex energy, Wi, < Im E <
0 . Moreover, the phase « in k is positive 0 < a < %w . In a similar way, one
shows with a partial integration that

_ Jo WPUdr N [ ! |2 dr
Jo© [2dr IS [)2dr

Hence, the real part of the eigenvalue is bounded from below Un;, < Re F.
However, Re E can be positive because of the second term in (160), even when
U(r) is attractive everywhere. A purely imaginary potential can only support
eigenvalues with Re £ > 0.

Further more complicated bounds [P3] can be obtained by replacing r by
e ®r in (157), in the spirit of the complex-rotation technique [126].

In what follows we analyze the solutions of the Péschl-Teller potential as
a radial problem [20], also allowing it to the complex domain. This potential

(159)

Re F

(160)
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can be interpreted as the special case of several shape-invariant potentials (see
table 1). Here we parametrize it as

V(r) = —% : (161)

The energies of the bound states are given by

— 2 _
E, = -k, =

—(s—1-2n)*, (162)

where n satisfies 2n 4+ 1 < s. The corresponding wavefunctions are written in
terms of Gegenbauer polynomials as

™ (r) ~ (cosh T)Q”“_SC’Q(ZZF%*Q“)(tanh ). (163)

These wavefunctions decay exponentially for the allowed values of n.
For positive energies F = k? (k > 0), the regular wavefunction reads

1 1 3
Y(r) ~ sinhr(coshr) ™ x F <§(—S + 1 —ik), 5(—8 + 1+ ik); 2~ sinh? r) ,

(164)
where F'is the hypergeometric function. From the asymptotic behaviour one
deduces the collision matrix

1\2* D(k)T (5(2+ 5 —ik)) T (31— s —ik))
<2> D(=ik)T (52 + s +ik)) T (301 — 5 +ik))
(165)
where A and ¢ are real. Except for a misprint, the same formula can be found
in [31].
Now we choose for s the complex value

S(k) = Aexp(2i0) = —

§=0+1i0 . (166)
It corresponds to a potential strength
—(u+iw) = —[o(c +1) = 5% —i5(20 + 1) , (167)

where both u and w should be positive in physical applications. We shall
assume that o and ¢ are both positive.

All the formulae (161) to (165) remain valid for a complex s. The condition
for having a square-integrable wavefunction () becomes Re k,, > 0, i.e.

Re(0—2n—1+4i5) >0 = 2n+1<o (168)
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Figure 3: Division of the uw plane according to conditions (168) and (169) for
a complex Pdschl-Teller potential with strength —(u + iw): total number of
normalizable states (left) and number of eigenvalues with a positive real part
(right). The points PT1 and PT2 correspond to the examples discussed in the
text.

This is different from the condition Re (E,) < 0 which reads
(c—-1-2n)?-3">0 = 2m+l<o-05 (169)

The situation is best seen in figure 3 where the uw plane is divided up according
to the number of square-integrable states and of states with Re (E,) > 0.
This splitting between two kinds of eigenstates naturally appears with the
introduction of complex potential parameters. In the real case (w = 0) the
difference between (168) and (169) disappears. It is clear from the graph
that a purely imaginary potential can have normalizable solutions but cannot
support states with Re (E,) < 0 (see (160)). A potential with a shape close
to that of V(r) in (164), most probably also shows these features. We expect
similar properties for normalizable solutions of potentials where the real and
imaginary parts have different shapes.

Numerical tests were performed in [P3] for two potentials of the type (164),
and the results were compared with the exact ones. The first potential (PT1)

58



was chosen to have a rather weak imaginary part and four bound states in-
cluding one with a positive real part, and corresponded to s = 7.1 +0.2¢. The
results for this potential resembled much to those of bound states in every
respect, and the phase-equivalent removal of its state with positive real part
of the energy lead to a realistic potential [P3]. As another example we con-
sidered a potential (PT2) with a stronger imaginary part, corresponding to
s = 5.1 + 2i. For this case the numerical methods led to poorer results.

In some cases the phase-equivalent potential obtained after the removal of
states showed an oscillatory behaviour, and this finding could be understood
in terms of the analytical calculations. In particular, the oscillations could be
explained by equation (45): whenever the modulus of the (complex) denom-
inator there is small, oscillations can occur [P3]. These analytical estimates
indicated that this unphysical oscillatory behaviour can occur when normal-
izable solutions with Re x << Im k are removed.

The results with the Poschl-Teller potentials indicate that the search for nor-
malizable solutions and the construction of phase-equivalent potentials can
be performed with high accuracy. In addition to the analysis of the energy
eigenvalues and phase shifts, further tests of the numerical methods can be
performed by comparing the wavefunctions and the transformed potentials
with the corresponding analytical expressions.

Ezxact analytic formulae for phase-equivalent potentials

The success of analytical methods in aiding numerical analyses also raises
the question whether it is possible to find examples where the whole proce-
dure can be performed in an analytical way, i.e. whether there are cases where
the resulting potential is obtained in a closed algebraic expression. Efforts in
this direction have been limited to some particular examples from the well-
known shape-invariant potential class [18]. The ground state of the Coulomb
[127, 128], Morse and Hulthén [129] potentials have been removed while keep-
ing the phase shifts unchanged, and somewhat more general transformations
have been formulated for the Coulomb [128; 44] potential. Other potentials
have also been studied without analyzing the effect of the transformations on
their spectra [130]. Apart from their aesthetic value, the importance of fully
analytical transformations lies in the fact that exact results can be obtained
even in critical conditions when the numerical techniques might not be safely
controlled. Handling complex potentials can raise such problems, for example
[P3, 6].

The abstract formalism developed for the derivation of phase-equivalent
partners of known potentials can be applied to the rather general Natanzon
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potential class [8], which contains all the shape invariant potentials [18] as spe-
cial cases. In order to demonstrate this we derived [P4] potentials which are
phase-equivalent with the generalized Ginocchio potential [14], which is proba-
bly the most well-known member of the Natanzon potential class. As opposed
to other approaches to solvable potentials, where the exact treatment of po-
tentials requires the analytical solution of differential equations, constructing
exactly solvable phase-equivalent potentials requires the analytic evaluation of
certain definite integrals. Our first results in this field concerned the deriva-
tion of phase-equivalent partners of the generalized Poschl-Teller potential by
removing any single bound state, adding a single bound state at specific en-
ergies and eliminating the first few bound states [C2]. However, we do not
mention these results here separately, because apart from the removal of the
first few bound states, they are contained implicitly among the results of our
analysis concerning the generalized Ginocchio potential [P4], which contains
the generalized Péschl-Teller potential as a special (shape-invariant) subcase.

Let us consider the generalized Ginocchio potential (105) and assume that
we want to eliminate the bound state with quantum number N. Following the
notation of (110) the N’th wavefunction can be written in a polynomial form

SN (r) = (42 + sinh® )7 (sinh u)* (cosh u) ¥ 2N =A~3p v (coshu) ,  (170)

where the coefficients of

_1 N .
py(coshu) = Ny (cosh u)2NP](V””’/\ 2)(2 tanh®u—1) =) cg-N) (coshu)® (171)
=0

are written as

C(py + N+ 10 (pun 4+ 2N + A+ 1 — )

(N) — A (—1)N-7 :
¥ v(=1) j!(N—j)!F(MN+N+1—j)F(/LN+N+)\+%)

(172)

The same formulae hold, of course, for any other bound-state wavefunction,
which we label with quantum number n.

In order to derive the new potential and the new bound-state wavefunc-
tions using (45) and (46), the substitutions ¢q(kg,7) = 1[)((]N)(r) and po(k,r) =
@ZJ((]")(T) have to be made now along with # = —1 in table 3. The integrals ap-
pearing in (45) and (46) can then be expressed in terms of the general formula

o ") (n) o (sinhu)”“"l
Ien(r) = [ 00 = 1 Gn(w) , (173)
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where Gy, (u) is defined as

Gon(1) 1 ”iv d(N™) (cosh u)?™
n(u
N A+ 1)72 2= pn + fin + 2N + 20+ 2\ + 1 — 2m
20+ 1)(2—1
[( )(3 )+((HN—f—Mn+2N+2n—2m)’72+2)\+1)
cosh” u
1 3
X F(—§(MN+un)—N—n+m+1,1;)\+§;—sinh2u)] (174)

This expression can be derived using equations 3.194.1 and 2 in [132] after
rearranging the summation for the two running indices appearing in the poly-
nomial form of w(()N)(r) and wén)(r). This also requires the introduction of the

coefficients
min(m,N)
m—n

M (175)

m—j
)

The resulting potential which has bound states at E, in (108), except for
n = N takes the form

j=max(0,

Va(r) = Vo(r) +2

v% 4 sinh® u [(pN(cosh u))2]2 _ 29*(pn(coshu))?

cosh® usinh®>ul  Gyn(u) Gnny(u)
[ 1 2un +4AN +2X +1 2\ 2 ply(cosh u)] (176)
v2 4 sinh? u cosh? u sinh®u ~ coshupy(coshu)!’

while the new bound-state wavefunctions are

1Z’én)(r) = (¥* +sinh’ u)i(sinh u)*(cosh u)_un—Qn—)\—%
GNn (u) ]
X |pn(coshu) — py(coshu . 177
Pn ) = px( )GNN(u) (177)

We note that in the v — 1 limit equations (173) to (176) reduce to the corre-
sponding formulae derived for the generalized Pdschl-Teller potential [C2].

Figure 4 shows V5(r) (as in (176)) obtained by removing the first excited
state (N = 1) of the reference potential. In accordance with the generalized
Levinson theorem (119) the (A — 1)A\r~2-type singularity of V(r) has changed
to (A + 1)(\ + 2)r72 for Vy(r), formally increasing the value of A with two
units. We do not plot here the corresponding wavefunctions, rather refer to
[P4]. The Jost function of V5 is directly related to that of V4 (see table 3),
which is analytically known (e.g. (117)). The S-matrices of V; and V5 are thus
identical.
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Figure 4: Potential V5(r) of equation (176), obtained by the removal of the
first excited state of the reference potential V5(r). The reference potential (of
(105) with s = 8, A = 3.25 and vy = 15) and the eliminated energy level are
represented by dashed lines. The n = 0 and 2 levels of the reference potential
are also shown.

With equation (47), m arbitrary bound states can be removed. For simplicity,
we focus on the m = 2 case but more general potentials can be obtained for
arbitrary m in an obvious way. After removal of the bound states at energies
Ey, and Ey,, the potential reads

_ d ()2 Inyn, + (572N Ny — 2087 9 I,
V4(’I“) = V()(’I“) —2— 5
dr IN1N1IN2N2 - (IN1N2)

(178)
where all functions depend on r which is implied. Note that due to (173) the
derivative of Iy, n; is simply the product of z/)(()Ni) and w((]Nj ). The wavefunctions
of the remaining bound states at energies E, can also be written in terms of
the same objects as third-order determinants [43, 45].

The two other options listed in table 3 can also be discussed using similar
techniques. These are the phase-equivalent addition of a new bound state at
specific energies and changing the potential while leaving the spectrum invari-
ant [P4]. The resulting potentials are expressed in terms of closed formulae
similar to (176) with the difference that the parameter 8 in table 3 remains
arbitrary, representing a new potential parameter.
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To conclude this subsection we note that the results presented here and in
[P4] are the first example for deriving phase-equivalent partners of a potential
outside the shape-invariant class using the formalism of SUSYQM. Another
novelty was that we also gave closed analytical expressions for the bound-
state wavefunctions of the new potential. It is also important to note that
the procedure of adding a new bound state to the spectrum requires an r -
like repulsive singularity of the original potential, therefore it is generalizable
only to potentials that have this feature. This forbids a similar treatment of a
number of potentials (Morse, Hulthén, Rosen-Morse, etc.).

Similarly to other fully analytical transformations, these results might be
helpful in testing numerical methods in situations that might be problematic
in terms of numerical techniques. This is the case, for example, for certain
types of complex potentials [P3, 130]: the present formulae are applicable to
complex Ginocchio potentials without any major modification. The particular
case of the Ginocchio potential offers analytical results for a potential with
rather flexible shape, which can be considered as a reasonable approximation
of realistic potentials used in nuclear physics, for example.

3.2.3 Factorization of spin-dependent Hamiltonians

As it has been discussed in subsection 2.2, isospectral Hamiltonians can be
generated by factorizing then in terms of two operators in the following way:

H, =QR, H, = RQ . (179)

(In this part we use the notation @ and R instead of A and A" normally
used in supersymmetric quantum mechanics.) As discussed previously, be-
sides isospectrality, the Hermiticity of the Hamiltonians H; and H, can be
guaranteed with the additional requirement ) = R'. In the simplest case the
one-dimensional (including the radial) Schrodinger equation is factorized, and
@ and R are defined as linear differential operators of the type :l:% + W(x).
The formalism can be developed further by more sophisticated realizations,
such as introducing spin variables in @) and R [P6, 133].

Consider the factorization of the Hamiltonians (179) in terms of ) and R
defined as

Q=o-(p+a(r)) +C(r), R=o-(p+b(r))+D(r), (180)

with units 7 = 2m = 1. Assume that C' and D are functions of r = |r|, and
that

ar)=f(r)r,  br)=gl)r. (181)
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This choice naturally leads to potential problems with spherical symmetry.
Substituting (181) into (180) one finds that

H = p’+(g+ flr-p+i(f—g)o-L—ig'r—3ig+gfr>+CD
1
+(C+D)a-p+(fD+gC—i;D')a-r. (182)

We note that the last two terms of H; in (182) have pseudoscalar character.
The corresponding formula for Hy readily follows from (182) by the f <> g and
C < D replacements. We note that (182) can be supplemented with further
terms in case we abandon the spherical symmetry by generalizing a(r) and
b(r) in (180) to

alr)=f(r)r+rx A, b(r)=g(r)r+rx B, (183)

where A and B are axial vectors [P6].

Table 4 summarizes the conditions under which some of the terms vanish,
and also lists the consequences of certain prescribed properties of ) and R.
These latter ones include conditions which guarantee the Hermiticity of H,
and H,. Table 4 also lists the condition for time reversal invariance requiring
that the terms including o - p and o - r transform in the same way under time
reversal.

In a rather general class of quantum mechanical problems the Hamiltonian
is Hermitian, has spherical symmetry, and is free from pseudoscalar and explic-
itly linear derivative terms. The above conditions are met if C'(r) = D(r) =0
and ¢g(r) = —f(r) = f*(r) hold. The Hamiltonians obtained this way depend
on the unspecified function f(r) and describe two non-relativistic problems
with spin-orbit interaction:

H, =p?+2ifo-L+if'r +3if — fr?, (184)
Hy, =p? = 2ifo L —if'r — 3if — f2r*. (185)

The wavefunctions can conveniently be separated into spin functions, spher-
ical harmonics and radial functions [P6].

The construction outlined above can equally be applied to analytically
solvable problems and those admitting only numerical solutions. In order
to illustrate the procedure, here we consider a problem of the former kind.
Substituting f = icr™" in (184) and (185) one obtains Hamiltonians in which
the spin-orbit interaction appears in a Coulomb-like term:

Hi=p*+&-25(c-L+1), Hy=p’++2°(c-L+1). (186)
r T
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Table 4: Conditions guaranteeing certain properties of operators ) and R as
defined by (180) and (181) and those of Hamiltonians H; = QR and Hy, = RQ.

Prescription Conditions

Properties of

Q and R Q'=Q fr(r)y=f(r) C*(r) = C(r)
R =R g9 (r) =g(r) D*(r) = D(r)
Rt =Q fr(r)=g(r) C*(r) = D(r)
R=Q f(r) =g(r) C(r) = D(r)
Time reversal

invariance f*(r)=—f(r) g*(r) = —g(r)

Properties of

Hy; and H,  mnoo-p term C(r) = —D(r)
noo-rterm  f(r)D(r)+ g(r)C(r) C'(r) = D'(r)

—ir 'D'(r) =0

no o - p and
o-rterm either g(r) = f(r) and C(r) = —D(r)
= const. # 0
or C(r)=D(r)=0
no r - p term g(r)=—f(r)

Evidently, bound states can appear only when the coefficient of the r ! type
term is negative. Without the loss of generality we can assume that ¢ > 0
holds: ¢ — —c merely interchanges H; and Hy. Then the sign of the Coulomb
term is determined by (o - L 4 1), which is [ + 1 for j = [ + 3 and —I for
j=1- % The resulting spectra are then

EUT = ¢ (1 - ((l+71)2> . Bl =2 (1 - #) . (187)

nt n+1+1)2 n+1+1)2

where the superscripts ‘4+" and ‘=’ stand for states with 7 = l+% and j =1[— %,

respectively. There are no bound states for E(!~) and E*?1).
The above energy eigenvalues can also be obtained from the matrix ele-

ments

[(n+1)(n+20+1)]z

n+l+1 ’ (188)

, 1. 1. .
(01 = 1, 5)jm|QIn(L, 5)jm) = —idwn
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[n(n + 20+ 2)]z
n+l+1
Similarly to the conventional Coulomb problem, the energy levels tend to

a well defined value in the n — oo limit. This value is not zero, rather it is ¢2,

due to the different choice of the energy scale. £ = 0 corresponds now to the

ground state of H; for the states with j = [ + 3, as it can be seen from (187)

with n = 0. This applies to any value [, so we have an infinitely degenerate

ground state for H;. The corresponding energy levels are missing from the

spectrum of Hs, as it can be seen from (187).

The first few energy levels of H; and H, are plotted in figure 5. The energy
levels exhibit a complex degeneracy pattern: E,%Jr) is the same whenever the
ratio (I+1)/(n+1+ 1) has the same value, which can be realized in an infinite
variety of ways. (A special case of this is the degeneracy of the ground state
with n = 0.) Similarly, E@~) has the same value if [/(n + [ + 1) is fixed.

Another example is obtained by substituting f(r) = iw/2 in equations (184)
and (185)

1 1
(n'(l+1, 5)jm|R\n(l, §)jm> = 10y n_1C (189)

2 3 w? ,
lep —WUL—§W+ZT s (190)
3 2
H2:p2+wa-L+§w+%r2. (191)

These equations describe oscillators, which also experience spin-orbit interac-
tion, the strength of which is correlated with the oscillator constant. With
this choice and j = [+ 5 (190) and (191) lead to radial Schrédinger equations,
from which the energy eigenvalues can immediately be determined:

ESY =2un ES7) =w@n+20+1), (192)

nl

E®Y = w@2n+20+3), E%) = 2u(n+1). (193)

nl nl

Again we find widespread degeneracy of the states of the two systems. There is

an infinite degeneracy for the ET(LIJH = E,(f__l),lﬂ levels for example, furthermore,

we again find that the ground-state energy is infinitely degenerate: ET(:B)I =

for any [ [P6].

We note that similar results have been obtained in a study [134] of the Dirac
oscillator [135]. This oscillator problem has also been derived previously in a
supersymmetric framework [136] interpreting the “accidental degeneracies” in
terms of an su(2)xOsp(2/2) symmetry group.
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Figure 5: The bound-state energy spectrum of the Coulomb-like problems.
The eigenstates of H; with j = [+ % are displayed in the left side of the figure,
while those of Hy with j =1 — % on the right side. States with the same value
of j appear in the same column in both cases. Only states with F/c? < % and

ST
)< 3

are shown.

With other choices of f(r) discussed in [P6] one arrives at quasi-exactly solv-
able (QES) problems. The most well-known example for the QES potentials
is the sextic oscillator (see e.g. [21])

L <z(z+1)

— 3z S+ Ar® + Br' + Cr6> Y =Ey, (194)

for which the conditions of the quasi-exact solvability are
C=a>, B=2ab, A:b2—2a(2m+l+g). (195)

Here a > 0 and m is a non-negative integer. The solutions ¢ can then be

written as
2

P(r) = Nr'tlexp <—az7"4 — gr2> <I>m(7"2) , (196)
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where ®,,(r?) is an m’th order polynomial of r? [137]. Hamiltonians of the
type appearing in (194) can be obtained from equations (184) and (185) by
substituting f = ia + ibr? in them, which is clearly a generalization of the
oscillator problem discussed before. In this case the quartic and sextic terms in
the Hamiltonians HZ-(i), 1 = 1,2 will be the same, together with the centrifugal
term, while the quadratic and constant terms become [-dependent. However,
we find that the condition for quasi-exact solvability (as in (195)) is fulfilled
only by Hf-l'), and only for m = 0, i.e. for the ground state. This ground state
is infinitely degenerate [P6], similarly to the Coulomb and harmonic oscillator
systems.

Relation to the Dirac equation

In the following example we elucidate the intimate relation between the
supersymmetric quantum mechanics (also in the form of the factorization
method) and relativistic quantum mechanics [4]. In particular, we present
a generalized approach to the Dirac oscillator [135], which also emerged in the
present discussion as special case. We present a systematic search for the solu-
tions of the Dirac equation [P2], in a manner somewhat similar to the method
applied in subsection 2.1 to the Schrodinger equation. For this we apply an
inverse method: we start with a general expression for the minimal and non-
minimal couplings in the Dirac equation, and then we reduce this equation to
its radial form, in order to study some families of potentials which could be
solved exactly or quasi-exactly. ,

We consider the Dirac equation of the form (¢ =h =1)

la- (p —ipv(r)r — u(r)r) + mp — E]¥ =0, (197)

where v(r) and u(r) are some functions of r and «, # and ¥ are defined as

(05 e h) () o

Squaring the coupled first-order differential equations in the usual way we get
for the ¥; component:

[PQ —2u(r)r - p + (V2(r) + u*(r))r* — 2vu(r)o - L

—r (E - 15> = 3(u(r) — iu(r) | ¥y = (B — m?)¥,. (199)
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Separating the radial, angular and spin variables by writing W, = r~' f(r)|(l3)jm;)
the following radial equation is obtained for f(r):

ez d I(+1) , d
~ 13 + 21ru(r)5 + - + (ro(r))” — E(rv(r)) —2(K + 1)v(r)
4-(ru(r))24-i§;(ru(r))-g]f(r)::o , (200)
where
sz(j+1)—l(l+1)—%:{l_l:_.l_:%_j_% iijilii (201)

and € = E? — m?.

Considering the following functional form for f(r)
f(r) =r¥exp(—z(r))®(r) (202)

we find after straightforward calculations that this f(r) solves (200) for the
special case of ®(r) = const. and € = 0 (i.e. B> = m?) if 2(r) is chosen as

z(r) = /r r'(=iu(r’) +o(r'))dr, (203)

provided that v(v — 1) =Il(l+ 1) and v = K + 1 hold. With v =1+ 1 and
—[ these are automatically fulfilled for the 7 = [ + % and j = [ — % cases,
respectively. So far the functions v(r) and u(r) have not been specified yet.
Further solutions of (200) can be obtained if we choose ®(r) as the confluent
hypergeometric function ®(r) = F(o, p;g(r)). This substitution yields the

following expressions for the unspecified g(r) and v(r) functions:

b
g(r) =ar? (a > 0), v(r) =a+— (204)
r
andalsopzu—i—%—l—banda:—ﬁ—%—i—%With
R TR for j=1+1
”_{b+§+j+1+b for j=1—73. (205)

Note, however, that we have not obtained any restictions for u(r) yet. The
wavefunctions then take the form

fH(r) = T%""j_b‘exp(—gr2 +iw(r))F(=n,, 2b+ 1 + |7 — b; ar?)

1

) = r2+‘j+1+b‘exp(—gr2 +iw(r))F(=n,,2b+ 1+ |j + 1+ b|; ar?),(206)

69



where we have used superscripts (+) and (—) to distinguish between the cases
for j = l+% and j = [ — %, respectively, and w(r) is defined as w(r) =
S r'u(r")dr’. This means that the u(r) function which has not been specified
up to this point contributes to a phase factor. The corresponding energy
eigenvalues are obtained from

1
e(+)E(E(+))2—m2:2a(2n,~+l—2j+§+b+|j—b|)
() = (B2 — 2 — 1 :
) =(FE )—m—2a(2nr+l+§+b+\j+1+b|). (207)

These results [P2] can be interpreted as the generalization of the Dirac oscilla-
tor [135], which corresponds to a = mw, b = 0 and u(r) = 0. The extension of
the Dirac oscillator in [138] is also included in these formulae with u(r) = 0,
although the energy eigenvalues published in that work differ slightly from
those in (207) due to a different parametrization used by the authors. Fur-
thermore, (207) also includes another extension of the Dirac oscillator in [139]
as a special case, where a linear potential has been considered in the minimal
coupling term in addition to the Dirac oscillator. This situation corresponds
to taking ¢ = mws, b = 0 and u(r) = imw,. These authors also noted that
the appearance of w, does not modify the energy spectrum, and the new term
with respect to the Dirac oscillator influences only the form of the wavefunc-
tions. A simple explanation for this result can be given by remembering that
u(r) basically represents a phase factor. This is not evident from the formulae
presented in [139], nevertheless one should remember that choosing an imag-
inary, rather than a real u(r) would break the hermiticity of the Hamiltonian
in (197).

Finally, we note that the sextic oscillator (194) can also be considered to solve
the Dirac equation with a generalization of the Dirac oscillator [P2]. For this
v(r) = car? +¢o and u(r) = 0 have to be considered, and the solution is trivial
for ®(r) = const.

3.3 Lie-algebraic methods

Lie algebraic methods associated with the relatively simple shape-invariant
potentials [18] have already been discussed in much detail (see the review and
references in subsection 2.3), so here I discuss algebras associated with certain
Natanzon-class potentials [8]. T also discuss the role of various irreducible
representations of SU(1,1) when the corresponding su(1,1) algebra plays the
role of a spectrum generating algebra.
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3.3.1 Realization of the su(1,1) algebra with an extra parameter

Here we first analyze an algebra associated with the Ginocchio potential men-
tioneded already in subsection 2.1 and 3.1.2, and investigate the role of this
algebra in the shape-invariant limit of the Ginocchio potential [C3]. Then we
discuss the role of the different irreducible representations of su(1,1) when it
plays the role of a spectrum generating algebra assocoated with a singular
potential.

The algebraic version of the Schrédinger equation with the Ginocchio po-
tential (102) can be obtained after suitable variable and similarity transfor-
mations [C3], which do not change the structure of the original algebra (see
subsection 2.3). We then get

[NIE

Jy = et? (:I:C’_%((S +1— 2%(x)) % Fo—— z(m)Jz> . (208)

jm) = ™8 + 1 — 2%(2)) T (1 — 2%(2)) 5@ DO (2(x)).  (209)

n

Direct calculation reveals that the effect of .J. on the basis states (209) is
changing n into n £+ 1 while leaving & = —j = m — n unchanged. Since the
potential parameters (i.e. A and ¢ in (103)) are interrelated with a and n,
we find that the generators ladder between states of potentials with different
shape in general. We also note that with the C = M(\2 —1)"! and § = (\? —
1)~! choice Jy reproduce the generators presented in [59] for the Ginocchio
potential, apart from some minor misprints there.

Let us now consider the special limiting cases [C3]. The 6 = 0 choice leads
to

oz

Ji = et (ic%a — 22(z))? o _ z(x)Jz> , (210)
which ladder between states of the potential V(z) = Ca(a — 1)(1 — 2%(z)) !
belonging to F = C(n + a)?. Since J, and J_ change n with one unit while
leaving o unchanged (which, due to 6 = 0 is now independent from n) su(1,1)
is a spectrum generating algebra here. This is also reflected by the fact that
the potential strength depends only on a(« — 1) = j(j + 1), the eigenvalue of
the Casimir operator, and the generators ladder between states with different

m = —j +n = a + n, which now sets the energy.
The z(z) = isinhz and C' = —1 choice recovers the Péschl-Teller potential
hole with
. +ig 0 .
Jy = —ie icoshxa— + sinhzJ, (211)
x
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as generators, found also in [69]. The imaginary factor can be eliminated by a
multiplication with i. This amounts to changing the functions h(z), g(z) and
f(z) to ih(z), etc., which also turns the algebra into the compact su(2) [69].
This is in line with the fact that the Poschl-Teller potential has finite number
of states. We note that using z(z) = sinz and C' = 1 one gets the trigonometric
Poschl-Teller potential, which has infinite number of states and is associated
with the non-compact su(1,1) spectrum generating algebra. The singularities
of this potential will later on be linked to various irreducible representations
of the non-compact SU(1,1) group [C1].
The § — oo, C6~" — C limit leads to the generators

Jy = e*i9 (ié—%% — 2(z) (Jz + %)) . (212)

Introducing v(v +1) = (A+1)0 ' we find that V(z) = —Cv (v +1)(1 — 2%(x))
and E = —C(v — n)? = —C(a — 1)2. The generators (212), again, ladder
between states with neighbouring values of n, keeping oo = V—n+% unchanged.
This, however, now means that n changes together with v, thus also with the
potential strength. Therefore J, and J_ connect states that have the same
energy but belong to different potentials, i.e. su(1,1) is a potential algebra
here. Contrary to the previous case, E is now related to the eigenvalue of the
Casimir operator (j(j+1)), while the potential strength is set by the quantum
number m = v + 1.

The Péschl-Teller potential hole arises for z(z) = tanh 2 and C = 1, which
corresponds to the usual Poschl-Teller limit (A = 1) of the Ginocchio potential.
J then turn into the standard form of the su(1,1) generators in the potential
algebra formalism [61].

In summary, we proved that in two important limiting cases, when the
Ginocchio potential reduces to the same types of (Pdschl-Teller-like) poten-
tials, the algebra essentially remains unchanged, but its role becomes different
in the two cases: in one limit it is a spectrum generating algebra, while in
the second one it appears as a potential algebra. The compactness or non-
compactness of the algebra depends on the actual transformation, which is
also reflected in the structure of the energy spectrum. For the Pdschl-Teller
potential hole the potential algebra was (the non-compact) su(1,1) and the
spectrum generating algebra was (the compact) su(2). This situation is re-
versed if we take the trigonometric version of the Péschl-Teller potential hole.

We note that the two algebras obtained as the special limits of the same
original su(1,1) algebra together are able to connect all the states of a series
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of Poschl-Teller potentials. Such algebras normally appear as subalgebras of
some larger algebra.

As discussed in subsection 2.3, various unitary irreducible representations
of SU(1,1) are associated with various types of solutions in the potential alge-
bra approach: discrete and continuous unitary irreducible representations are
assigned to bound- and scattering-state wavefunctions [61]. This is related to
the fact that the Casimir invariant of these problems is related to the Hamil-
tonian of these potentials by H = —C5 — 1, so the eigenvalues j(j + 1) of Cs
determine whether the energy is in the bound or the scattering domain (i.e.
whether it is positive or negative).

This naturally raises the question whether the unitary irreducible repre-
sentations of SU(1,1) also play such diverse roles when su(1,1) is a spectrum
generating algebra. To explore this question, let us consider the differential
realization of the su(1,1) algebra (210) with h(z) =sinz, f(z) = cosz, g(z) =
c(x) = 0. This is a spectrum generating algebra associated with PII type po-
tentials, which one obtains from the eigenvalue equation (Cy—j(j+1))|jm) = 0
of the Casimir operator:

& jG+1)
. 2 o
ST < dz? + sin’

— m2> Yim(x) =0 . (213)

Apart from the sin? z factor this is the Schrédinger equation with the trigono-
metric Poschl-Teller potential hole, which is a special case of several PII and PI
type shape-invariant potentials listed in table 1. This problem can be looked
upon either as a potential restricted to 2 = [0, 7], in which case it resembles
the infinitely deep rectangular well, or as an element of a periodic potential
[C1]. This duality is also connected with the eigenvalue of Cs.

If j(j +1) > 0, the potential goes to infinity at the boundaries, thus
separating the z = [0, 7] domain from the others. This is the case when one
considers the discrete unitary irreducible representation of SU(1,1) (discrete
principal series) D;-’, with j taking negative integer or half-integer values. The
bound states are then associated with m, where its allowed values are [1]
m = —j,—j — 1,... . The operators J, and J_ ladder between the bound
states and are elements of an su(1,1) spectrum generating algebra [69]. (Due
to the m — —m symmetry of 213 the same problem can also be described by
the D series.)

For the continuous series [1] C} and C’,i/2 j=—%+ik (k >0, real), and m
takes on integer or half-integer values. The eigenvalue of C is now —i — k2%, s0
that attractive inverse-square-like singularities appear at the boundaries. It is
well-known that —~yr~2-like singularities result in the fall of the particle into
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the center of attraction if 7 > ; holds [104], and it is obvious that the above
case corresponds to such a 7.

There also exist, however, the supplementary series [1, 61] (58) with —% <
J < 0. This unitary irreducible representation of SU(1,1) has not played any
role in the potential group approach, where (Cy) was related to the energy
eigenvalues, because the discrete and continuous series already accounted for
the bound and scattering solutions of the potentials considered there. Here,
however, one can identify the supplementary series with “weakly” attractive
inverse-square-like potentials, since in this case —% < j(j 4+ 1) < 0 holds, and
the complications associated with the “strongly” singular potentials (as above)
do not appear. Another peculiar feature of problems with “weakly” attractive
inverse-square-like potentials is that both independent solutions are regular at
the origin in this case [116].

As we have suggested in [C1], the attractive potential associated with the
supplementary series of the SU(1,1) group can also be looked upon as an ele-
mentary cell of a periodic potential. In this case modification of the boundary
conditions is required, which necessitates the modification of the whole pro-
cedure designed initially to study bound-state solutions. We note that in a
recent study [140] the supplementary series have indeed been associated with
the band spectrum of periodic potentials.

3.3.2 A parameter-free realization of the su(1,1) algebra

As an example for algebras with differential realizations not containing ex-
tra parameters, I present an su(1,1) algebra associated with the generalized
Coulomb potential. As we have noted previously in subsection 2.3, these re-
alizations typically appear in relation with problems associated with the con-
fluent hypergeometric functions. The speciality of this example is that the
differential operators forming the algebra act on the generalized Coulomb—
Sturmian basis states [P5], rather than on the physical wavefunctions.

We define the generalized Coulomb-Sturmian equation as a differential
equation which has similar structure to the eigenvalue equation (74) with po-
tential (73)

A B q2 3C 5CH C(B-3
Xolor) = l‘ﬁ‘w(b(mm? L6(h(r) +0)° * 4h(r)(h(r) +9)

- (%9 +p(n + §)> ﬁ + %/ﬂ] ¢(p,r) =0, (214)
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and is solved by the generalized Coulomb—Sturmian (GCS) functions [P5]

(rln) = onlp,7)

(F(n +1)
I'(n+p)

=

(ph(1) 5 exp(=Sh(r) LY (ph(r)

(215)

1/2
) (oh(r) + pb)

Here p is a parameter characterizing the generalized Coulomb-Sturmian basis.
The GCS functions, being solutions of a Sturm-Liouville problem, have the
property of being orthonormal with respect to the weight function C'z (h(r) +
§)~!. Introducing the notation (r|i) = ¢y (p, r)C2 (h(r) +6) ! the orthogonal-
ity and completeness relation of the GCS functions can be expressed as

and N N
1= Z% ) (n| = Z% [n)(7] . (217)

Straightforward calculation shows that both the overlap of two GCS func-
tions and the (n'|Hg|n) matrix element can be expressed as a tridiagonal ma-

trix, therefore the matrix elements of the E—H, operator also have this feature
(141, P5]:

o s e o Cip 4 1
(B oty = o | Gton 5= 9) = Op+(2n+ﬁ)> |
1 E C%
unir (n+ 1) (1 + 5)) ( C§p+cj”) . (218)

This means that similarly to the D-dimensional Coulomb and harmonic oscil-
lator potential, the matrix elements of the Green’s operator can be determined
by using continued fractions, as described in [142]. The present results, there-
fore, extend the applicability of this method to a new potential problem. The
formulae presented here reduce to those in [142] in the appropriate limits dis-
cussed in subsection 3.1.1. The role of the Coulomb—Sturm parameter b used
in [142] is now played by Czp/2.
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We note that the generalized Coulomb—Sturmian functions can, in principle,
be used in calculations for realistic systems such as the a — « cluster configu-
ration of the ®Be nucleus [7].
Having set the basis, an su(1,1) algebra
[jI; jg] - —ijg [jg, jg] — ljl [jg, jl] - 1j2 (219)

can be defined in the following fashion:

. h+0 3 .
J3— OpX+(n+2), Jl—Jg—Qh
. i d i0
= _(hhroyr S - T 22
o= =m0 = o) (220)

As can be seen from equation (214), Js is diagonal in the basis (215) with
eigenvalues m = n+ g The elements of this basis can then be associated with
the discrete principal series D} [1] mentioned in (54) and (55), for which the

allowed values of m are m = —j, —j + 1, —j + 2,..., with j being negative.
It is natural then to identfy 7 as j = —g. Direct calculations show that the
ladder operators connect the neighboring members of this basis:
j+¢n(p: 7“) = (jl + 1j2)¢n(p: 7“) = [(n + 1)(” + ﬂ)]1/2¢n+1(p: T) ) (221)
jf¢n(p: 7“) = (jl - 1j2)¢n(p: T) = [n(n + ﬁ - 1)]1/2¢n*1(p: T) : (222)

We find that the eigenvalues of the Casimir invariant
Co=J2—J - J2 (223)

are 2(2 — 1) = j(j + 1), as expected, and that they set the strength of the
fourth term in (214). For 6 # 0 this is the only singular term and it behaves
like yr~2 with v = (8 — §)(6 — 3) = 4j(j + 1) + 2. It is interesting to inspect
the allowed values of v for the different unitary irreducible representations of
SU(1,1). For the discrete principal series D;F [ > 1 holds, which always secures
—i < 7, i.e. the potential has repulsive or “weakly attractive” [116] r—2-type
singularity. For the supplementary series [1] —3 < j < 0 holds, which results
in —i <y < %. This is exactly the domain where both independent solutions
are square integrable at the origin [116]: for 0 < v < % one of these vanishes at
r = 0 and the other one is infinite there, while for —i < v < 0 both solutions
vanish at r = 0. From (215) it is seen that solutions regular and irregular at

the origin correspond to 3 > % and 3 < % This seems to indicate that one
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regular solution (with 4 > 1) is associated with D;F, while the second square
integrable solution, which is either regular or infinite at the origin (depending
on () might be related to the supplementary series, for which 0 < § < 1
holds. For the sake of completeness we note that for the continuous series [1]
C? and C’;/Z, j =—1+ik (k > 0, real) is valid, which results in the strongly
singular v < —i case. The solutions then oscillate infinitely near the origin
and are unbounded from below [116], which can be interpreted as the falling
of the particle into the center of attraction [104]. The situation is similar to
that described in [C1] for the V(x) = vsin™?x potential: the various unitary
irreducible representations of the SU(1,1) spectrum generating group there also
corresponded to different types of singularities.

We note that we analyzed the singularities of the generalized Coulomb-Sturm-
ian equation (214) and its solutions (215), but similar considerations of the
physical potential (73) and its solutions can also be performed taking D =
3 and I = 0. The algebraic construction, however, does not apply to this
latter problem. This is because the bound-state solutions (78) pick up extra
n-dependence through p,, which is not accessible for the ladder operators
otherwise changing n as in equations (221) and (222).

The present realization of the su(1,1) algebra is a special case of that described
in [12] in relation with the Natanzon confluent potentials. Considering the
Coulomb and harmonic oscillator limits discussed in subsection 3.1.1 and set-
ting the dimension to D = 3, the generators reduce to the forms presented for
the two problems separately in [64]. We note that the spectrum generating
algebra associated this way with the radial harmonic oscillator problem in
three dimensions is different from the one-parameter realization of the su(1,1)
algebra discussed in [69, C3], because the ladder operators there are linear
differential operators and the Hamiltonian is related to the Casimir invariant,
while here the ladder operators are second-order differential operators and the
Hamiltonian is essentially a linear function of generator Js.

3.4 PT symmetry of potentials

My results for PT symmetric potentials are divided here into three main parts.
First a class of potentials (mainly shape-invariant ones) are discussed, for which
PT symmetry can be implemented by applying an imaginary coordinate shift.
Then the unusual features of P7T symmetric potentials are illustrated with
the example of the Scarf IT potential, finally, examples are presented for more
complicated situations, where the potentials have to be defined along bent
contours of the complex x plane in order to make them P7 symmetric.
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3.4.1 Potentials generated by an imaginary coordinate shift

Here we apply the procedure outlined in subsection 2.1 to potentials with
bound-state solutions containing hypergeometric and confluent hypergeometric
functions. It turns out that this method is especially suited to deriving the PT
symmetric versions of shape-invariant potentials, but also those of some more
general Natanzon-class potentials. The key element is choosing the otherwise
unimportant § coordinate shift in (10) as an imaginary constant and keeping
C real [P9].

First we apply the method to the Jacobi polynomials P{*#)(z) [19]. Modify-
ing somewhat the parametrization used in (135) the actual form of (6) becomes
[P9]

2 2
)

) EECTTN RN VAN

sy - (F) (47| T () (7).

Note that in this parametrization o and  appear only in the (o + 3)/2 and
(v — 3)/2 combinations.

Let us consider first the PI case [10] defined by the differential equation
(2/)2(1 — 2%)7! = C (see table 1), which sets the third term on the right-hand
side of (224) to a constant. Rewriting the first two terms as the function of z

2
Lot B+ 1) C

and rearranging the equation we get
O {1 (a+B) (a—p)]
2 1—2%(x) |4 2 2

2 _
_ 20z(x) (a+B) (a=p . (225)
1 —2%(x) 2 2
The z(x) functions are the solutions of the differential equation defining the
PI case, and their general form is given by the actual version of (10):

E-V(z) = C’(n

dz

Depending on the nature of C' (whether it is positive or negative) and that of 2>
(whether it is larger or smaller than 1), there are several solutions possible. In
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[10] five different cases were identified, labeled by z(z) = isinh(az), cosh(az),
cos(azx), cos(2ax) and cosh(2az) for C = —a?, —a?, a?, 4a® and —4a®. These
correspond to the five PI type potentials listed in table 1. Also z(z) = sin(ax)
is a solution, but it gives the same potential as z(x) = cos(ax), only shifted
with 7 /a, therefore it was not considered as a separate solution in [10].

Let us now examine how these z(x) functions behave under a P7 trans-
formation if we allow § # 0 in (226). The transformation properties of z(z)
also determine those of E and V(z) in (225). It is easy to show that PT in-
variance of the potential cannot be reached in general if § has a non-zero real
component, because then the finite shift along the coordinate = renders V'(z)
and its PT transformed version to essentially different forms. (There is an ex-
ception for those cases when z(z) is a trigonometric function, because then the
potentials are periodic. However, if we consider these potentials only within
a single period, then P7T invariance is lost for these special cases too.) If we
set 0 = ie, then the transformation properties of the z(x) functions specified
previously are the following:

PT : z(x) = isinh(az + i) — Z(x) = isinh(ax + i€) = 2(z) ,

PT : z(x) = cosh(ax +ie) — Z(z) = cosh(ax + i€) = 2(z) ,

PT : z(x) = cos(ax +ie) — Z(x) = cos(ax + i€) = 2(z) ,

PT : z(x) = sin(az +ie) — Z(z) = —sin(az +i€) = —z(x) . (227)

The first three cases have been considered previously [10], while the fourth
one has to be considered as a new independent possibility if we generalize our
study to PT symmetric quantum mechanics.

The PT transformed version of (225) is

E-V() = EB*—(V(-2))* =
_ CGHff+w+1y %E@)<M+ﬁv<w_ﬁv

2 11— 2(x) 2 2

1‘( : >_( : )] (228)
(Remember that we chose C' to be real.) It is clear from (225) and (228)
that P7 invariance of the potential is satisfied for the Z(x) = z(z) cases if
(a*)? = o? and ($*)? = (% holds, i.e. for a* = +a and $* = +4. This can
happen if @ and [ are purely real or imaginary.

When Z(z) = —z(z) holds, then the change of the sign in the last term in
(228) has to be compensated with the appropriate choice of & and . Requiring

¢
1 —2%(x)

+
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Table 5: Conditions for having real and complex spectrum for P77 symmetric
shape-invariant potentials.

Type V(z) Real-energy Complex-energy
regular solutions regular solutions
2 2)— . (a2=p2)sin i€ . .
PL -ty — it o freal o or 4 imaginary,
€# 5 tkn €# 5 tkn
a? 2)— a?—p32 T+ie . .
i(sin;;?mli:) ( stnzlg?ii(ie;r ) a, [ real « or 3 imaginary,
€ #km € # krw
2— 0627 . .
_4(:0;1%(1:41»%6) + 4sirilh2($41r%€) o, (3 real a or # imaginary,
€ #km € # krw
a?+4%)— a?-—p? r+ie . .
i(sin;“(i Jzie)l ( Qanngi(iJ ) a, (3 real a and/or  imaginary
€#0 Im(a+ () #0,e#0
2_ 2_ . .
4coif(x +1 P 4siﬁ§‘(x Jrl% ) a, (3 real « and/or [ imaginary
€#0 Im(a+ () #0,e#0
2 2)— 2_32)sin i€ % %
i(josj(ilie)l = 2£53(SIJ£SF ) f=a f = —a* imag.,
e#£0 €#0
PII —7CO:}S§(ZIJZR) — 2iAtanh(x + ie) s, A real no such solutions
€# 5 Etkn
% — 21\ coth(x + ie) s, A real no such solutions
€ # km
sizgs(;ize) — 21\ cot(x + ie) s, A real s=—1+io,
e#£0 €#0
Cozgi;r}r)ie) + 2i) tan(z + ie) s, A real § = _% + io,
e#0 €#£0
LI “’Tz(x +i€)> + (a? — 1) (:Hlie)Q « real « imaginary,
e#0 €e#0
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also PT invariance of the other potential term (which is an even function of
z(z)) restricts the parameters to (a*)? = 2%, i.e. we get a* = +3. The a* = 3
choice leads to (o + 3)* = a + 3, and in this case the energy eigenvalues
remain unchanged and are purely real. The a* = —f choice also secures PT
invariance of the potential, however, in this case the energy eigenvalues might
become complex, due to (o + 3)* = —(a + ).

We listed the individual PI type potentials and the corresponding energy
formulae in table 5, along with the conditions for P7 invariance. For the
sake of completeness we also displayed the z(z) = cosh(2ax + i€) and z(x) =
cos(2az + i€) options, which are not independent cases, rather they can be
obtained from the z(z) = cosh(ax+ie) and z(z) = cos(az+ie) cases by the a —
2a replacement, using also formulae connecting hyperbolic and trigonometric
functions with similar functions having half the original arguments. We also
included in table 5 the z(z) = sin(ax + i€) case, which did not appear in [10] as
an independent problem, because z(z) = cos(az) could be trivially obtained
from z(z) = sin(ax) by a simple coordinate shift. As noted previously, real
shifts of the coordinate are not compatible with P7 invariance in general (e.g.
§ = ie is purely imaginary), therefore these two cases cannot be obtained from
each other now, only if we define the potentials to be periodic.

The PI type potentials listed in table 5 are complex in general, due to the ie
constant. If we set € = 0, the symmetric potential terms become real, while the
odd ones turn purely imaginary. In fact, in this case the z(xz) = cosh(ax + i0)
and the z(x) = cos(ax +1i0) potentials become fully real for any allowed « and
B. The remaining two cases, z(x) = isinh(az 4 i0) and z(z) = sin(ax + i0)
present imaginary antisymmetric potential terms too.

There are also further special values of € which deserve attention. It can be
shown that the ¢ = 0 version of the two hyperbolic PI type potentials can be
obtained from the general z(z) = sinh(az + i€) and z(z) = cosh(az + i€) cases
alike, when € is set to k7 or /2 + km. This means that the two potentials can
be continuously transformed into each other by carefully tuning e.

According to (8) the solutions of the Schrodinger equation expressed in
terms of a Jacobi polynomial have the form

Y() ~ (1= 2(2) T (1 + 2(2)) 7T PD (2(2)) (229)

The regularity of these wavefunctions can be controlled by appropriate rela-
tions for a, [ and n, whenever |z] — 0o or z = £1 can occur. For the case
of |z| — oo regular behaviour of ¢(z) can be guaranteed by the prescrip-
tion n + [Re(a + ) + 1]/2 < 0. This condition sets an upper limit for n:
n < —[Re(a+ ) +1]/2. When z =1 or z = —1 can occur, then the regularity
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of ¥(x) requires Re(a) > —1/2 and Re() > —1/2, respectively. Now let us
see which of these conditions apply to the individual PI type potentials listed
in table 5.

In the z(z) = isinh(ax + ie) case only |z| — oo has to be taken care of,
for x — +o00. (We note that z = £1 can also occur here if sin(e) = £1 holds,
because in this case z(x) — Fcosh(ax). Since this special case corresponds
to a particular example for the next PI type potential, we do not consider it
here.) Then n < —[Re(a + ) + 1]/2 sets an upper limit for the number of
bound states. This condition also means that there are no bound states for
this potential if both o and [ are imaginary. Special cases of this potential
with € = 0 are mentioned in [83] (a = ﬁ+ 1, g = ﬁ — 1, a = p) and [84]
(a:—b—A—%,ﬁ:b—A—% ,a=1).

For z(z) = cosh(az +1i€) the n < —[Re(a+ 3) +1]/2 applies again, because
z| = oc can occur. Now z = +1 can also appear, if cos(e) = +1. In these
cases a singularity appears in the potential at x = 0. (We note that this
singularity also appears for the conventional version of this potential, which is
considered as a radial problem.) If we exclude these particular values of €, then
the potential becomes finite everywhere, and there are no further restrictions
for the potential parameters. Similarly to the previous case, there are no
bound states if both a and 3 are imaginary. The P7T symmetric Péschl-Teller
potential discussed in [87] corresponds to this case, taking @« = —A — 1/2,
f=B—-1/2,C =—-4, a=1 and using —2¢ instead of e.

In the trigonometric cases z(xz) = cos(az + i€) and z(x) = sin(az + ie),
z| — oo cannot occur, therefore no conditions limit the possible values of
n. Furthermore, z = +1 can also occur for ¢ = 0 only, in which case these
potentials have singularities at az = k7, and az = (k + %71'), respectively,
similarly to the conventional versions of these problems. Then the Re(a) >
—1/2 and Re(f) > —1/2 conditions also have to be observed in both cases,
and have to be combined with the other conditions for o and 3 required by
PT symmetry.

The regularization of the potentials by eliminating their singularities with
appropriate choices of € relaxes the boundary conditions considerably. This
means that in principle, the second independent solution of the Schrodinger
equation (which is disqualified due to these boundary conditions for the con-
ventional problems [143]) also becomes allowed. In fact, the general solution of
the Schrodinger equation can then be written in terms of two hypergeometric
functions as

Yla)~ (1= )9t (O

2c—1

T Fl(a, b;¢;y)
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+C’gy¥F(b—c+1,a—c+1;2—c;y)) : (230)

where y = (1 — 2z(z))/2. The particular solution (229) can be obtained from
(230) by setting Co =0, a = —n, b = n+a++1 and ¢ = a+1, which reduces
the remaining hypergeometric function to a Jacobi polynomial. (See equation
22.5.42 in [19].) As we shall see in subsection 3.4.2, the second solution does
not introduce anything essentially new, rather it corresponds to changing « to
—a.

Let us turn to the PII case [10] defined by the differential equation (2')?(1—
2?)72 = C, in which case the fourth term on the right-hand side of (89) becomes

a constant:
a+ 2 a—f ?
() ()

E-V() = -2 <O‘;r5> (O‘;ﬁ> A(z) - C

e (m%ﬁ) <n+a;ﬁ+1> (1—2%(z)) . (231)

With a parameter transformation the n-dependence can be transferred to the
constant (energy) term. The potential then can be written as

V(z) = —Cs(s +1)(1 — 2*(x)) — 2CA2(x) , (232)

where s = n + @ or s = —n — (O‘JQ’B) —1and A = %5# This gives
a=s—n+A/(s—n), B=s—n—A/(s—n),ora=—s—n—1—A/(s+n+1),
B=-s—n—1+A/(s+n+1). The energy eigenvalues are then given by
E=-C ((s —n)?+ (31—\2)2) or B =-C ((s +n+1)2+ ﬁ) In order to
simplify the formalism, in what follows we consider only the first set of the
above relations: the second set can be obtained by the s — —s—1 substitution.

The z(x) functions are again supplied by the current version of (10):

dz
1 — 22

=2 44 . (233)

In [10] the 6 = 0 choice was made and three independent solutions were iden-
tified: 2z = tanh(az), coth(az) and —icot(ax) with C' = a?, a* and —a?,
respectively. One further solution, z = itan(ax) with C' = —a? is essentially
the same as the —icot(ax) case, therefore it was not discussed as a separate
possibility.

Considering the P7T symmetric case, we again find that the § = ie choice
has to be made in order to reach P7T invariance of the potentials. The transfor-
mation properties of the four possible z(x) functions under the P7T operation
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are the following:

PT :z(x) = tanh(ax +ie) — Z(z) = — tanh(az +ie) = —z(x) ,

PT :z(z) = coth(ax +ie) — 2(x) = — coth(azx + ie) = —z(z) ,

PT :z(x) = —icot(axr+ie) — Z(x) = —icot(ax +i€) = z(x) ,

PT :z(x) = itan(ax +ie) — Z(z) = itan(ax + i€) = z(z) . (234)

Similarly to the PI case, the last z(z) function can be obtained from the other
trigonometric one by using 6 = —m/(2a) + i€ instead of § = ie. However, we
again considered it an independent case because finite real translations are
not compatible with P7 invariance in general. The P7T transformed potential
(232) becomes

V(z) = =Cs*(s* + 1)(1 — 2*(x)) — 2CA*Z() (235)
and the corresponding energy eigenvalues are £ = —C ((3* —n)? + S(A_Z;)Q)
For the Z(x) = z(z) cases PT invariance is reached if (s(s+1))* = s(s+1) and
A* = A. This means that A has to be real, while s is either real, or s = —% +io.
In the first case a and (3 are both real, and the energy eigenvalues are also real.
When z(xz) = —z(x), then for PT invariance we need (s(s + 1))* = s(s + 1)
and A* = —A. In this case A has to be imaginary, while s can have the same
values as in the previous case. If s is real, then o* = 3 holds, and the energy
eigenvalues are real. The general form of the solutions is now

() ~ (1= 2(2)) 2 (1 + 2(2)) T PP (2(2)) (236)

Table 5 contains the individual PIT type potentials, the energy formulae,
and the conditions for PT invariance. Their detailed analysis can be performed
similarly to the procedure presented in the PI case: the P7T symmetry of the
potential, the normalizability of the wavefunctions and the reality of the energy
spectrum determine conditions for the potential parameters.

For the generalized Laguerre polynomials L{(*)(z) [19] the current form of
(6) becomes (71) [P9], and the corresponding solutions, according to (8) are

D) ~ (2'(2)) 77 (2(2)) 5 exp(—2(2)/2) L (2(x)) . (237)

Picking the third term on the right-hand side of (71) as a constant and setting
(2/)?27! = C we get the LI case [10]. Equation (71) can be rewritten as

E—V(x):C’<n+a;Ll> —%z(x)—4zfx) (m%) @-%) . (238)
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According to (10) the solution of the defining differential equation of z(x) is
given by

2(z) = %(x +6)? (239)

with § = §/C'/2. Again we find that only the § = ie choice with real € can
result in a PT invariant potential and that the P7T transform of z(z) is

PT : 2(x) = %(x +i6)? —s 3(z) = <%(—x + 16)2) _ %(x +ie)? = 2(a) .
(240)
The PT transform of (238) is

. . a* +1 C . C L, 1 . 1
E* — (V(~1)) —C’<n+ _ >—Zz(x)—m(a +§) (a —5) |
(241)
Comparing (238) and (241) we find that PT symmetry holds if (a?)* = o? is
satisfied, i.e. if « is purely real or imaginary (a* = f+a). In the former case
the energy eigenvalues will be real, despite the complex potential terms.
By using (237) a particular solution of the corresponding Schrddinger equa-
tion is written as

() ~ (2(2) 7T exp(—2(x)/2) L) (2(=)) . (242)
Since Re(z) > 0 for x — oo (and also for x — —oc), the solutions vanish
asymptotically.

In the conventional treatment of this problem [10] the § = 0 choice was
made in order to obtain a radial problem defined on the positive semi-axis.
The C' = 2w > 0 choice rendered the energy to be positive, and o = [ +
1/2 accounted for the centrifugal term. This means that the wavefunction
behaves like 2/*! near the origin. Solutions which are non-zero at the origin
are not considered physical in the conventional case, when solutions only on
the positive semi-axis are taken into account. However, in the P7 symmetric
case the singularity represented by the centrifugal barrier vanishes if € # 0
holds, therefore the problem can (and should) be extended to the full = axis.
In this case the general solution of the problem can be written in terms of two
confluent hypergeometric functions [19], but similarly to the PI and PII cases
it turns out that the second set of solutions are obtained from the first one
by the a — —a replacement. This has been discussed in [86], where the P7T
symmetric harmonic oscillator was introduced, and this possible double sign of
« has been attributed to a “quasi-parity” quantum number. The parameters
used there are related to the present ones via C' =4, o> —1/4 = G and € = —c.
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We note that this extension of the radial problem to the full line in the P7T
symmetry context also contains the one-dimensional harmonic oscillator. In
that case the centrifugal barrier does not appear, which corresponds to setting
a to 1/2 and —1/2. The generalized Laguerre polynomials then reduce to
Hermite polynomials, which are odd and even, respectively, corresponding
to the odd and even solutions of the one-dimensional problem. In the P7T
symmetric context there is no point in discussing the Hermite polynomials
and the one-dimensional harmonic oscillator separately, as in [10] for ordinary
quantum mechanics.

When we attempt to analyze the LII (Coulomb) and LIIT (Morse) cases
in the P7 symmetric context by solving the differential equations (2')? =
C and (2')?27%2 = C (as in [10]), we arrive at limits of applicability of the
present approach. Their nature is clearly visible from the form of the general
solutions (237): the normalizability of the wave functions does not depend on
the powers of the various terms in (237) as for Jacobi polynomials, rather the
boundary conditions are determined by the z(z) function itself, which appears
in an exponent. In particular, one should have z — oo for x — 400 to
secure normalizability of the wavefunctions. This was guaranteed in the LI
(harmonic oscillator case) by the form of z(z) in (239), but the corresponding
solutions in the Coulomb and the Morse cases, i.e. z(z) = C'?z + § and
2(z) = exp(C"/2x + 6) lead to infinities at one limit. In conventional quantum
mechanics the latter two cases are considered as radial problems, therefore it is
enough to have regularity of z(z) for x — oc. A way around this problem can
be found if one replaces the linear integration path (x + ie) with curved ones.
One possible way to find such curved integration paths is to apply a variable
transformation to the P7T symmetric harmonic oscillator problem [86] to get
PT symmetric Morse [91] and Coulomb [P8] potentials.

A similar analysis was also made to derive conditions under which the
same potentials have complex energy eigenvalues [P13]. The results are also
displayed in table 5. In some cases the conditions regarding P7T symmetry of
the potential, normalizability of the eigenfunctions and the complex nature of
the energy eigenvalues contradicted each other, so it turned out that certain
potentials cannot have normalizable states at complex energy eigenvalues. The
results in [P13] agree with those of [144] for the harmonic oscillator, and contain
the findings of [93] on the Scarf IT potential as a special case, but besides these
they were all new.

A general feature of the shape-invariant potentials discussed here is that
the functional form of the potentials depends on the squares of the potential
parameters which can take on imaginary values (i.e. «, (3, i), therefore the
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potentials are insensitive to the sign of this parameter. However, this sign
appears explicitly in the energy formulae as the sign of the imaginary com-
ponent of the energy, thus the occurrence of complex conjugate energy pairs
is a necessity. From the structure of the energy formulae it is apparent that
depending on the potential parameters, the energy eigenvalues of these poten-
tials are either all real or complex, so they practically do not occur together
at the same time.

It is worth noting that besides the shape-invariant case, the present method
also works for some “implicit” potentials, such as the Ginocchio potential [13].
As discussed in subsection 3.1.2, this is obtained by setting @ = 8 in (224),
reducing the Jacobi polynomial to an ultraspherical (or Gegenbauer) one [19],
and considering (100) in (9) [C3]. It can be shown without deeper analysis that
the Ginocchio potential can be made P7T symmetric by the present method.
In particular, the actual form of (10) becomes [C3]

5% tanh ! (25%(5 +1- zZ)fé) +tan ! (2(5 +1- 22)*%) = Cz+ie , (243)

and even this implicit functional form shows (e.g. via a series expansion)
that the PT transform of z(z), Z(z) = (2(—z))* = —z(z), therefore V(z), in
which z(z) appears only through 22(z) (see also (102) and [C3]) must be PT
invariant. For potentials beyond the Natanzon class, one has to check each
case individually. There the F'(z) function can have more general forms, and
it is not guaranteed that it satisfies a second-order differential equation as in
our approach.

Finally, we note that the imaginary coordinate shift can be interpreted as
a Hermitian linear automorphism defining n-pseudo-Hermiticity. In this case
n = exp(ep), where p is the momentum operator p = —i%, and n 'V (z)n =
V(z + ie) readily follows [145].

3.4.2 An illustration: the P7 symmetric Scarf II potential

Here we consider the PT symmetric Scarf II potential to illustrate the unusual
features of PT symmetry [P16], including the case of unbroken and sponta-
neously broken P7T symmetry, the appearance of the quasi-parity quantum
number ¢ associated with the richer bound-state energy spectrum, the mod-
ified inner product and the pseudo-norm derived from it, which is known to
have indefinite sign.

The PT symmetric Scarf IT potential occupies a special position among
PT symmetric shape-invariant potentials. It is defined on the whole x axis, it
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has no singularity at x = 0, and in contrast with most other shape-invariant
potentials, it can be turned into a P7 symmetric form without regularizing
its singularity by means of an © — z +ie imaginary coordinate shift [P9, 145].
Therefore it is not surprizing that it became a “guinea pig” of testing PT
symmetry on a solvable example. It has been associated with the sl(2,C)
[146], su(1,1)~so(2,1) [P10] and so(2,2) [P15] potential algebras, and it has
also been observed that its P77 symmetric version has a second set of bound
states, which appear as resonances in its Hermitian version [146, P10]. This
mechanism of doubling the bound states is essentially different from the one
arising from the cancellation of singularities at + = 0 by the imaginary coor-
dinate shift. This potential is also known to have (purely) real and (purely)
complex energy spectrum, depending on the relative strength of its real and
imaginary component [93], and since the two domains can be connected with
a continuous tuning of the parameters without crossing a singularity, it is a
perfect example to illustrate the breakdown of P77 symmetry.

Here we follow the notation applied throughout the present subsection and
also used in [P9, P13, P16] to discuss the Scarf IT potential

- [ (R ) )
2

The bound-state energy eigenvalues are

2
1
Eéa,ﬁ) — _ (n + arpPT- ™ g + ) , (245)

while the corresponding wavefunctions
¥ (z) = @A) (1 — isinh(z)) 54 (1 + isinh(z)) 25 PP (isinh(z)) (246)

are expressed in terms of Jacobi polynomials [19] and are normalizable if n <
—[Re(a + ) + 1]/2 holds.

In the Hermitian case o and 3 are complex and satisfy o* = (: a =
—s— 3 — 1\, f=—s— 5 +1\ [147, 10]. In this case only one regular solution
exists. It is obvious that with arbitrary a and 3 the general complex version
of the Scarf II potential is obtained.

As discussed previously [P9, P13], the Scarf IT potential can be made P7T
symmetric if o* = +a and * = + holds [P9], i.e. if @ and  are both either
real or imaginary. In order to have real energy eigenvalues both oo and 3 have
to be real, while to have complex bound state spectrum, i.e. in the case of
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spontaneous breakdown of PT symmetry one of them has to take an imaginary
value [P13]. If both a and ( are imaginary, then there are no bound states.
Here we assume that [ is real, and a can be real or imaginary, depending
on whether the P7 symmetry is unbroken or broken. This choice does not
restrict the generality of the problem, since the roles of a and (3 can easily be
reversed, due to the properties of the Jacobi polynomials [19].

For the Scarf II potential the breakdown of P7T symmetry takes place
when the strength of the imaginary potential component exceeds a certain
limit depending on the strength of the real potential component, as described
in [93]. This condition corresponds exactly to taking imaginary values for «
instead of real ones (see e.g. [P13] for the details), so a smooth transition over
the critical point can be achieved by moving « to zero along the real axis and
then continuing along the imaginary axis.

In the PT symmetric case there are two sets of normalizable solutions
[P9, 146, P10], which carry the upper indexes (a, ) and (—«, ) in (246).
Obviously, (244) is not sensitive to the + or — sign of .. In the notation of [148]
the two solutions corresponds to quasi-parity ¢ = +1 and —1. In what follows,
therefore, a can implicitly be replaced with ga. This sign difference results
in two distinct energy eigenvalues in (245), which form a complex conjugate
pair when « is imaginary, i.e. in the case of broken P7 symmetry. In this
case the PT operation transforms the two solutions into each other, while in
the unbroken symmetry case the two solutions are eigenfunctions of the P7T
operator.

In what follows we are going to evaluate integrals containing the standard
and PT symmetric inner product of wavefunctions of the type ¢)(*®%) () (246).
Let us consider the P7T symmetric inner product [95, 96] of two solutions of
the type (246)

1300 = [~ oD @) ) ) (247)

According to our choice, 3 is real and § can be +a, depending on whether we
calculate the PT symmetric inner product of states with the same or different
quasi-parities (§ = o and 6 = —a, respectively), furthermore, a can be real or
imaginary, depending on whether the PT symmetry is unbroken or broken.
Without presenting the technical details [P16], we just state the result

[(015’5) — (@B) [Cl(@ﬁ)]*(_UnQ(O&’ﬂ,ﬁﬁ) , (248)

nl n nl

which can be evaluated as the special case of

EERESLEL sin[m (o 4 6*) /2] sin[7 (8 + 7*)]

(,8,7,0) _ ¢ 1yn+l
Qu = (=02 sinf(a+ B+ +07)/2)]

nl
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- m [ n+a n+ l o [+ [+ 6*
<z (M) () me (0 )
M tn—m+m' + DML 41+ m—m' +1)

>< * *
D(@EBE20 4 4] 4 2)

(249)

with v+ = (3. This closed formula can be obtained in a multistep way by
substituting in (246) the explicit expression

P@A) (isinh(z)) = ! n<n+a><n+ﬁ>

om =\ m n—m
x(—=1)"""(1 — isinh(x))" ™(1 4 isinh(x))™ , (250)

then evaluating the integrals of the type

AP = /oc (1 —isinhz)*(1 + isinh 2)(sinh x)"dz i=0,1, (251)

—0oC

and finally calculating the double sum for the running indices. As discussed in
[P16], the complicated expression of binomial coefficients reduces significantly
whenever 6* = a and v* = 3 holds, and this actually happens not only for the
case of the PT symmetric inner product, but also for the usual one, in case of
the Hermitian Scarf IT potential.

Equation (248) together with (249) has significant implications regarding
the PT symmetric inner product (247). First note that whenever o = —¢*
holds, the integral vanishes due to the presence of the sin[m(a + §*)] term in
(249). This corresponds to either & = ¢ with imaginary «, i.e. the inner prod-
uct of wavefunctions of the same type (same quasi-parity) in the broken P7T
symmetry case, or « = —¢ with real «, i.e. the inner product of two differ-
ent type (different quasi-parity) wavefunctions in the unbroken P7 symmetry
case. So we can conclude that the two states are orthogonal in these situations.

Let us consider the cases when a # —0*. The first case is § = « with real
« (unbroken PT symmetry). With this choice (and remembering that [ is
real) we get

2a+5+2 sin(ﬂ'a) Sin(ﬂ'ﬂ)
a+pf+2n+1 sin[r(a+ ()]

—1
X(azi;2n> <Oz+ﬁn+2n>. (252)

](Oéﬁya) _ 5nl‘c(a,ﬂ)‘2

nl - n

This proves directly the orthogonality of the states of the same type (i.e. those
with the same quasi-parity) for n # [ when the PT symmetry is unbroken,
and gives a closed formula for the pseudonorm for n = I.
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Previously this pseudonorm was known only for the ground state n = 0 [148],
while the orthogonality of the eigenfunctions was proven only indirectly [96,
93]. This latter proof rests on the equation

o
(Ba—Ef) [ u@)i(~a)ds = 0. (253)
— 00
which is the equivalent of the equation proving the real nature of the energy

eigenvalues for Hermitan systems. In the case of unbroken P7T symmetry E,
and E; are real and they are not equal, consequently the integral in (253) has

to vanish.
The only remaining case is 0 = —« with imaginary «, when 6* = a holds
again. This case gives us the overlap of eigenstates belonging to different

quasi-parity in the broken PT symmetry case. It turns out that the I,(l?’ﬁ’_o‘)

overlap has the same form as (252), except that |C{*#)|2 has to be replaced
with C{A [0 7).
Let us summarize the results for the different cases [P16].

e Unbroken P7 symmetry (« real), same quasi-parities: 1}3’5"” is diagonal

in n and [, as seen from (252). To extract more information, we can
rewrite equation (252) in a somewhat different form, after eliminating the
sine functions from the formulae by combining them with some gamma
functions via I'(x)['(1 — z) = 7/ sinma:

20+A+2 I'(—a—p03—n)

(—a—=p—-2n—1)n!T'(—a—n)I'(-3—n)

(254)
Due to the condition for having bound states, i.e. n < —[Re(a)+(+1]/2,
if v is real, every term in (254) is positive, except (—1)"™ which alternates,
and [['(—a — n)T(—F —n)]~", which is real, but its sign depends on the
relative magnitude of o, § and n. Except for extreme values of a and 3
the argument of the two gamma functions is positive for the first few n’s,
so then the alternating (—1)" factor determines the sign of the pseudo-
norm, but as n reaches —a and/or —f3, this regular pattern changes. The
results concerning this case are new, except for n = 0.

](?:/6704) — 6nl (_1)"71-‘07(7‘04:/6) |2

n

e Unbroken P7 symmetry (« real), different quasi-parities: If;ll’ﬁ’fa) =0,

due to sinm(aw — o*) = 0 in (249). This was already proven though
indirectly by (253) [96, 93].
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e Broken P7 symmetry (o imaginary), same quasi-parities: I.27% = 0,

due to sinm(av — o*) = 0 in (249). This was already proven though

indirectly by (253) [96, 93].
e Broken PT symmetry (o imaginary), different quasi-parities: I,(;f"ﬁ’_a)
is diagonal in n and [, as seen from (252). But in this case it seems
that for n = [ there can be two different wavefunctions which are not
orthogonal, in general. Equation (254) holds for this case too, except for
a change in the term containing the normalization constants, as discussed
before. This non-orthogonality of two different states is a new feature of
PT symmetric problems, which in this case appears only when the P7T
symmetry is broken. This unusual new result seems to be supported by
(253): when the PT symmetry is broken, the energies of the two states
with the same principal quantum number n but with different quasi-
parity are complex conjugate to each other, so the zero value of (253) is
secured by the energy term, and the integral need not be zero.

This completes the analysis of the possible integrals of the type (247).

For the sake of completeness we also present a side product of our calculations:
the normalization coefficients calculated for the bound-state wavefunctions of
the Hermitian Scarf IT potential. These can be determined from

[ e @ @) e = e[ PG Y (o5
because in this case f* = « also simplifies the summation in (249), and we
find that

1/2
(0,8) _ =481 [F(—a—n)l“(—ﬁ—n)(—a—ﬁ—zn— 1)n! )
Cn 2 F(_a_ﬁ_n)ﬂ- . ( 56)

These normalization coefficients have not been known previously due to the
involved mathematics [147, 93].

Finally, we note that an expression similar to (159) connecting the imaginary
component of the potential with that of the energy can also be evaluated for
the sake of tracing the mechanism of the spontaneous breaking of the PT
symmetry as « is moved from real to imaginary values through a = 0. Un-
fortunately, in this case the double sums in (249) remain rather complicated,
nevertheless, the integrals can be evaluated for the first few states, and we
indeed get

Im(E() = %(a — o) (a+a* +28+4n+2), (257)

as expected from (245).
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We also mention a mathematical “byproduct” of the present calculations,
i.e. a formula missing from the standard compilations [149]:

kz:)(_l)k<z>(a;inn;k><b+z+k>:(_1)m<:z> . (258)

which can be proven by recursion. The interesting feature of this result is that
the right-hand side is independent of a and b.

Besides the bound states, the scattering states have also been analyzed
for the Scarf Il potential, and the transmission and reflection coefficients have
been determined [P10]. In this analysis the more general version of the Scarf 1T
potential was considered, with the z — x + ie imaginary coordinate shift. The

transmission and reflection coefficients of the Scarf II potential were found to
be

L(3(a+B4+1) —ik)D(—5(a+ - 1) — ik)
T(—ik)T(1 — ik)T2(L — ik)

T(k,a,B) =
xngﬁ—a+n—mw%@—ﬂ+n—my (259)

R(k,aB) = iexp(2ek) (COS(%(Oz + ﬂc;;zizi)n(g(a - 9)

_sin(3(a+ B+ 1)) cos(3(a = )
sinh(7k)

) T(k, o, B). (260)

These equations contain both the Hermitian case with ¢ = 0 and o = * =
—s— 3 — 1A [P10, 147], and the PT symmetric one with unbroken (« real) or
spontaneously broken (« imaginary). It is remarkable that the imaginary shift
affects only the reflection coefficient (260). This exponential factor clearly
shows that the |T|*> + |R|*> = 1 relation breaks down in the P7 symmetric
case, which is not surprizing if we recall that we have complex potentials in
this case, in which the flux is not conserved. We note that although the
extra exp(2ek) factor increases the modulus of the reflection amplitude (260)
if ek > 0, it remains finite as long as e < 7/2. Since cosh(z +iF) = isinh(x),
for this particular value of € the potential becomes [P9] a singular (generalized
Poschl-Teller) potential, and equations (259) and (260) do not apply.

3.4.3 Other types of P77 symmetric potentials

A large number of PT symmetric potentials have to be defined along bent con-
tours of the complex = plane in order to generate normalizable solutions. This
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was the case with the first examples of PT symmetric potentials [89] which
were found numerically, but there are also exactly solvable potentials with this
property. It is not surprizing that defining potentials on bent contours of the z
plane introduces further exotic features of P77 symmetric potentials, making
them more interesting for mathematical, rather than physical investigations,
nevertheless, here we mention some examples for the sake of completeness.

As we have seen in subsection 3.4.1, the imaginary coordinate shift failed
to turn the Morse and the Coulomb potentials into P7T symmetric problems,
because the solutions were not normalizable along the x+ie line. This transfor-
mation, actually, takes the Morse potential into a non-P7 -symmetric problem,
which, however, has real energy eigenvalues [146, 145]. Alternatively, its PT
symmetric version has to be defined along a bent contour [91]. The situation
is similar for the PT symetric Coulomb potential too, which can most conve-
niently introduced by applying a variable transformation to the P77 symmetric
harmonic oscillator [86]. The Liouvillean method [118] (or the point canonical
transformation [117]) presented in subsection 3.1.3 offers a convenient frame-
work for this. This operation can also be recognized as the P7 symmetric
Kustaanheimo—Steifel transformation [P8].

We start with establishing the notation for the P7 symmetric harmonic
oscillator, introducing also explicitly the quasi-parity quantum number. (See
subsection 3.4.1 and [86].) The potential is defined as in table 5, except that
for simplicity we put w = 2. Then the energy eigenvalues are E, ) = 4n +
2 — 2 g, now exhibiting the ¢ quantum number too, while the corresponding
normalizable eigenfunctions can be written (see also (242)) as

Ping)(r) = N r1/2700 72 [(=00) (42) (261)

where the integration path » = x +ie is a straight line. For € < 0 it lies in the
lower half of the complex plane.

In the spirit of the Kustaanheimo—Steifel mapping of harmonic oscillators
on Coulombic bound states we now have to define a complex variable ¢ as a re-
scaled square of r(z) such that the resulting path ¢(z) remains P7T invariant.
In the PT symmetric setting this mapping is [P§]

r? = —2ik*, (262)
where k = Kk, > 0 depends on the individual state. This maps the straight
line 7(x) = x + ie upon the curve t(z) = u +iv, where u = u(z) = —ze/k? and

v=uv(z) = (2% —€?)/(2k?), so for € < 0 it forms an upwards-oriented parabola
v=—€2/(2k%) + u®k?/(2¢?) in the complex plane.
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Having achieved a P7T symmetry in the complex plane of ¢, we may move
to the (trivial) insertions and conclude that all the above-mentioned harmonic
oscillator bound-state solutions are in a one-to-one correspondence with the
solutions of the Coulombic Schrédinger equation

d? a2—i 7 e?
(—@—l— - +i n >\I'(t)—E\If(t). (263)

Asin the conventional case, k becomes n— and g—dependent, /f%n’q) = Ze?/(2n+
1 — ga), so the Coulombic solutions take the form

\Ij(n,q) (t) =M g1-ae)/2 exp(i H%n,q)t)ngiqa)(_QiH%n,q)t) ) (264)
and their energy spectrum is specified by the elementary formula
ZQ 4
By = Kb o = ¢ g=+1, n=01,.... (265

(n,q) (2n +1— qa)2

One immediately notices the peculiarities of the P7T symmetric Coulomb
problem. First, the charge is replaced by an imaginary quantity, and conse-
quently, the energy eigenvalues are positive, rather than negative. As for other
PT symmetric potentials, there are now two sets of levels, and the energy of
some ¢ = —1 states can even become divergent for n = 2a — 1/2 [P8].

This transformation can also be used to generate non-shape-invariant po-
tentials too, similarly to the Hermitian case. In particular, the transformation
discussed in subsection 3.1.3, i.e. the one taking the Eckart potential into the
Natanzon type V(PXV)(z); in (120) can also be implemented in the P7T sym-
metric setting [P12]. Without presenting the details, we just state the main
results. To repeat the procedure in subsection 3.1.3 one again considers first
the original PT symmetric (Eckart) potential defined on the straight x + ie
line of the complex z plane, and then transforms this into a bent trajectory
by substituting it into the function defining the variable transformation. This
is now defined implicitly by sinh(z + ie) = —ie¥, leading to

3 2i3 C
V() = ; e — : 266
(g) 4(1 _ e)21§ + (1 _ e21,5)1/2 1— eglg ) ( )
which is the P7T symmetric version of the VI(DKV)(x) potential discussed in

subsection 3.1.3. Similarly to the Hermitian case, the energy eigenvalues are
again determined by a cubic formula for n, however, it turns out that in the
PT symmetric setting there are two real roots leading to normalizable solu-
tions [P12]. This is in accordance with the general observation concerning P7T
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symmetric potentials, i.e. that the energy spectrum becomes richer (develops
a second set of normalizable states), mainly due to the less strict boundary
conditions.

Finally, we briefly mention another type of solvable potential which for-
mally does not belong to the Natanzon class, but it illustrates the mechanism
of spontaneous PT symmetry breaking. This is the P77 symmetric square well
potential defined on a finite interval, say x € (—1,1) as

(Y z<0
Vie) = { Y 2> 0. (267)

where Y is a real constant. It is defined together with the boundary conditions
p(£1) = 0 [150, P14]. In [150] the case of unbroken P7T symmetry was
considered, when the energy eigenvalues are real. It was found that this holds
until a critical value of Y, where the first two levels “merge and disappear”.
However, it can be shown that Fy and E; simply become the complex adjoint
of each other [P14], in accordance with the mechanism of the spontaneous
breaking of P7T symmetry.

Without presenting the details here we only sketch the main elements of
the analysis in [P14]. First ¢o(z) and ¢;(z) are written in the form of hy-
perbolic functions as ¢ ~ acosh kx + bsinh kx, and then the wave number is
matched to the (complex) energies E and Y. Then the boundary conditions
are implemented through the logarithmic derivative of the solutions, and this
ultimately leads to a (complex) transcendental equation

Acoth A+ k% coth k* =0, (268)

where \> = —e—ie —iY and k? = —e+ic—iY, and F = e+ ic are the complex
conjugated energy eigenvalues Fy and F;. The transcendental equation can be
solved graphically, and one finds that the energies E; and F, become complex
(i.e. complex conjugates of each other) when Y reaches the dritical value
Yerit ~ 4.475 [P14]. A second critical value was also found near 12.80155.
This means that the energy eigenvalues turn into complex pairs at different
critical coupling constants, which is different from what we have seen for the
PT symmetric shape-invariant potentials in subsections 3.4.1 and 3.4.2. There
all the energies turned into complex pairs at the same coupling parameters,
so the spontaneous breakdown of P7T symmetry took place in a single step,
rather than continuously.
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3.5 The interrelation of the three symmetry concepts

The unusual features related to the P7T symmetry of quantum mechanical
potentials naturally raise the question how other symmetries of the same po-
tentials are affected by P7T symmetry. We are particularly interested in con-
structions based on supersymmetric quantum mechanics (SUSYQM) [3, 4] and
Lie algebras. The doubling of the basis states due to ¢ = £1 implies that the
superpotential also has to carry the quasi-parity quantum number, and also
that some algebras associated with the basis states of conventional potentials
have to be enlarged.

PT symmetry and supersymmetry

Let us modify the standard SUSYQM formalism by adding the ¢ quasi-
parity quantum number to the SUSYQM shift operators
d d
Ale) — = + W (2) Afle) — - + W (z) (269)
through the superpotential W9 (z) = —L1In @b(()?)_(x), where @z},(f)_(x) is the
n’th normalizable wavefunction with quasi-parity ¢ [P17, C4]. Substituting
directly A@ and A" in the factorized form of the Hamiltonian, the two
sets of solutions would belong to two potentials shifted with respect to each
other with an energy constant, because the ground-state energies E((),ir_Q) would
be zero for ¢ = 1 and —1 alike, by construction [3, 4]. In order to avoid
this, let us write the “bosonic” Hamiltonian in the factorized form H_ =
AN@D A@) 4 (@) = AT0) A(9) 4 (=9 containing the ¢-dependent factorization
energies ¢(¥9) = E((),i_Q). Then H_ becomes independent of ¢, and its eigenvalue
equation takes the form
B0 = [ATC0460 L oyl 00 (or)

)

The “fermionic” partner Hamiltonians qu), however, will depend on g:

H{EDU, = [AG0410 4 GO0, — B0 G0 (o)

n, n,

With equations (270) and (271) one can easily prove the A(iq)wﬁfl functions

are eigenfunctions of the HSFiQ) “fermionic” Hamiltonians, and the correspond-
ing energy eigenvalues are the same as those of the g-independent “bosonic”

Hamiltonian:

HY AWy = B A@y0 (272)
H{ 9 ACOyp@ = B0 AC0y@ (273)



Af(=9) Af(@)

H F
-q 4 —-q 9 -q 4
H?Y H_ —  HWY
Al=4) Al

Figure 6: Schematic illustration of the relation between the spectra of the
“hosonic” Hamiltonian H_ and its two “fermionic” partners H® and H{?.

The energy scale and the relative spacing of the energy levels is arbitrary.

However, there is a difference between (272) and (273) that in the former
case A(q)d},(ﬂ)_ = 0 holds by construction, so the partner of the ground-state
“bosonic” level is missing from the spectrum of Hgf) 3, 4], while the situation
is different for (273), so there the number of levels is the same in the “bosonic”
and “fermionic” Hamiltonians. The situation is schematically illustrated on
figure 6.

We illustrate this procedure with the example of the Scarf II potential
(244), considering it the “bosonic” potential. Then the superpotential is [P17]

1 :
W (z) = —§(qu + [ +1)tanhx — %(ﬁ — qa)sechx | (274)

which generates (244) as the “bosonic” potential V_(x), provided that the the
factorization energies are (%) = —i(qa + 3+ 1)%2 The “fermionic” partner
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potentials then take the form [C4]

qgo+ B+ 2 2 qgoo— 3 S|
() e () S
+2isinhx <ﬁ+qa+2> (ﬂ—qa)

cosh? z 2 2

1
Vf])(x) - " cosh?z

(275)

The results obtained for the Scarf IT potential have significantly different
implications for unbroken and broken P7 symmetry, corresponding to real and
imaginary values of a [P17, C4]. In the former case the “fermionic” partner
potentials (275) are P7T symmetric, and the energy eigenvalues remain real.
In the latter case, however, the coupling parameters of both the even and odd
component of the potential become complex due to the imaginary value of «,
therefore the “fermionic” potentials cease to be P7T symmetric.

We note that a similar system of partner potentials has been obtained [151]
from two essentially different supersymmetric constructions; i.e. the para-
supersymmetric scheme (where a three- rather than two-dimensional matrix
representation is used) and second-order supersymmetry (where A and A in
(269) are second- rather than first-order differential operators).

As a further combination of PT symmetry and supersymmetry we mention
a realization of the N = 2 SUSYQM algebra (17) in which the supersym-
metric charge and shift operators contain the time reflection (i.e., complex
conjugation) operator 7 in the form [152]

~ 0 0 ~ 0 Atl@T
QZ(TA@ 0) QT:(O 0 ) (276)

Consequently, the SUSY Hamiltonian is different in its “fermionic” component

_ r7(0) t(a) g(a)
H? o \ _ [ Af@4 0
H= ( 0 ggrq) ) = ( 0 TA(G)AT@T) ' (277)

This indicates that the “bosonic” component of the modified Hamiltonian is
(_Q) = H(_Q), while the “fermionic” compo-
nent of the modified Hamiltonian coincides with the complex conjugate of the
original “fermionic” Hamiltonian H Sf) =TH Srq)'T. By introducing the shifted
energy scale as in (270) and (271) these relations become H_ = H_ and
ﬁ(f) = THSf)T + [(@]*. For unbroken PT symmetry of H_, i.e. when the

energy eigenvalues are real and consequently (%) is also real, this means that

the same as in the original case, H
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the energy eigenvalues of ﬁgf) are also real, while for spontaneously broken

PT symmetry, when the energy eigenvalues and £(9) are complex, the energy
eigenvalues of HS?) are the complex conjugates of the eigenvalues of HEE). The
eigenfunctions are equally trivially related to the original “fermionic” eigen-

functions in both cases.

Furthermore, the P7T invariance leads to a special relation between the P and
T operations themselves. If Hgf) is PT symmetric, then the complex conju-
gation operation has the same effect on it as the P spatial reflexion operation,
S0 INIEE) contains the spatially reflected potential appearing in HS?), so the
modified SUSY construction does not differ essentially from the usual one. A
similar relation holds between the eigenfunctions, if they are eigenfunctions of
the PT operator, i.e. if the PT symmetry is unbroken. The energy eigenval-
ues of ﬁ(f) are real and the same as those of Hgf), as we have seen above. In
the case of spontaneously broken P7 symmetry the situation is different since
the eigenfunctions are not invariant under the P7T operation anymore. The
energy eigenvalues remain the same since the complex conjugate pairs simply
transform into themselves under complex conjugation. However, in the case

of the spontaneously broken PT symmetry, the PT invariance of H =HY

need not lead to the P7T invariance of ﬁgf) as we have seen on the example of
the Scarf II potential [P17].

PT symmetry and potential algebras

Let us now turn to the algebraic framework to describe P7T symmetric
potentials. In particular, we investigate potential algebras (discussed in sub-
section (2.3), the ladder operators of which connect degenerate states of po-
tentials with different depth, but of the same type. In the Hermitian case the
practical equivalence of the SUSYQM construction and the one based on an
su(1,1) (or su(2)) potential algebra has been demonstrated [69] for B and A
class shape-invariant potentials, which contain the Morse potential and various
Scarf and Pdoschl-Teller potentials. We focus on the P7T symmetric versions
of type A (or PI class) potentials.

Our first results concerned the construction of an su(1,1)~so(2,1) algebra
related to the Scarf IT potential (244) [P10]. It turned out that similarly to
the Hermitian case, the normalizable states of this potential supply a basis
for the irreducible representations of the SU(1,1) potential group. A major
difference, however, is the presence of the second set of normalizable solutions
due to the g quasi-parity quantum number, which indicated that a second
su(1,1)~so(2,1) algebra is required for the complete description of the problem.
In the Hermitian case the second set of solutions corresponded to resonance
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states with complex energy, and can be associated with finite dimensional
non-unitary irreducible representations of SU(1,1) [59]. These states can be
identified with the poles of the transmission amplitude (259) with k = +1 (o —
B) —i(n+ 1) [P10]. In the PT symmetric case these states turn into bound
states in the sense that their energy eigenvalues become real, unless the P7T
symmetry is broken spontaneously (i.e. & becomes imaginary rather than real).
Note that in the latter situation both sets of normalizable states have complex
energy eigenvalues, the energies of which are complex conjugates of each other.
In group theoretical terms this means that the nature of the SU(1,1) irreducible
representations also changes when one goes from the Hermitian case to the PT
symmetric one, and also when P7T symmetry is spontaneously broken. We
note that the Scarf I potential has also been analyzed in terms of the complex
s1(2,C) algebra [146, 153].

Based on the first findings we performed a systematic study of the so(2,2)
~ 50(2,1)®s0(2,1) algebra associated with PI type potentials, with special
attention to their P7T symmetric versions [P15]. For this we considered the
differential realization of the so(2,2) algebra

[J,, o] = +Js [Ty, J_] = —2alJ, , [Ji, Kj] =0 (278)

K, Ki]=+K4 K., K_|]=-2bK, , 1,] =+, —, 2, (279)

which also includes the so(4) and so(3,1) algebras for a = b = —1 and a =
—b = £1, respectively. We parametrized the generators as [P15]

Jo = e*? <ih1(x)% + g1(2) + fi(z)J, + 1 (x) + kl(x)KZ> : (280)

.0
T =—igs (281)

and
+i 0

KL =¢e™X (ihQ(ac)a—jj + go(2) + fo(x)J, + cax) + kQ(x)KZ> : (282)

.0
K.=—ig-. (283)

and found that the algebra defined in (278) and (279) is obtained if the fol-
lowing relations hold:

k2 — hokh =D hofy — foks =0 ka—f2=b, (284)
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C1 = Cy = 0 s (285)

hy = Ahy f1 = Ak, ki = Afy g1 = Ags , (286)
A? = % = 1. (287)

Here we have assumed that h;(x) # 0, k; # 0 and f; # 0 holds. For h;(z) =0
the differential term with respect to z would be cancelled in J. (280) and
K, (282), while f;(z) = k;i(z) = 0 would contradict (284). We also note
that from the three equations in (284) only two are independent and that
the choice of hy(z) determines fy(x) and ko(z) immediately. However hy(z)
does not determine go(z), so there are two independent functions defining this
construction.
The Casimir invariant

C5") = 20" 42050 = 2 (—ad 4+ T2 = J. DK K+ K2 — K.) (288)
is a second-order differential operator

CYIOU = AbR2U" + Abhy(hl, + 295 — ka) U’ + [4b(hagh + g3 — kago)
+2(1 — bk3 — bf3)(J2 + K2) — 8bfokoJ. K, ] V. (289)

The eigenfunctions of CéJK), which are also the eigenfunctions of J, and K,
are U = U(x,¢,x) = e(MP+mX)q)(x). Here t)(z) is the physical wavefunc-
tion depending on the coordinate x, while ¢ and y are auxiliary variables,
which are multiplied with m and m’, the eigenvalues of generators J, and K,
respectively.

Since the above algebras are of rank 2, they admit a second Casimir in-
variant, which can be written as the difference of the two SO(2,1) Casimir
invariants in (288)

CS" = 20" — 209, (290)

It turns out that the eigenvalue of this operator is always zero for the present
differential realization of the algebra, irrespective of a and b. Therefore, we
have generated the symmetric irreducible representation of so(2,2) (or so(4))
(73], usually labelled as (w,0), where w is the quantum number defining the
eigenvalue of the first Casimir invariant

T = w(w + 2)0. (291)

w is connected with the eigenvalue j(j + 1) of the Casimir invariant of so(2,1)
(or so(3)) by the relation w = 2j. Of course, a simple formal transition from an
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so(2,1) algebra to an so(3) algebra can be made by multiplying the h;, g;, f;,
ki, ¢; (i =1, 2) functions with the imaginary unit i. This exactly corresponds
to the changes a — —1 and b — —1. It also turned out from the construction
that only the a = b = £1 choice leads to solvable potentials, therefore in this
scheme only the so(2,2) and so(4) algebras can be obtained, but not so(3,1)
[P15]. This is a constructive proof of an assumption used in [72, 73].

Following the method presented in subsection 2.3 for the su(1,1) algebra,
the Schrodinger equation can be obtained from the egeinvalue equation of the
Casimir invariant in case the linear derivative term is eliminated with the extra
constraint

1 ,
92 = 5 (ks — h) . (292)

With this choice we get

CYTOW = 4bR2U" + [b((R))? + k2 — 2h!hy) — 2
+4(1 — bk3)(J? + K2) — 8bfakyJ, K, |
= ww+2)¥. (293)

A Schrédinger-type differential equation can be obtained from (293) if hy is
a constant. Similarly to the su(1,1) case (see [69] and subsection 2.3), this
choice defines the so(2,2) algebra as a potential algebra, with generators lad-
dering between degenerate states of potentials with different parameters but
similar shape. In [P15] all members of the PI potential class (see table 1) were
discussed in terms of the so(2,2) (or so(4)) potential algebra.

The ladder operators of the so(2,2) potential algebra associated Scarf 1T
potential are

. 0 1 i
—=et? [ +— — tanh + = K 294
Jy=e ( B tanh z(.J, 2)+coshx Z) , (294)
K, = e*ix 9 tanh 2 (K, + 1) ). (295)
ox 79 coshz”?

The m and m’ labels are expressed in terms of the potential parameters as
m = —(a+ )/2 and m' = (f — a)/2. The ladder operators shift these values
with one unit, which corresponds to changing o and 3 in a correlated way
[P15].

The PT symmetric versions of the remaining PI class potentials were also
derived in a similar way [P15], implementing also the imaginary coordinate
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shift discussed in subsection 3.4.1. It was also found that the so(2,2) generators
transform under the P7T operation in a characteristic way:

PT(J/K)(PT)' = (J/K) , PT(J/K),(PT) ' = —(J/K), . (296)

As it can be seen from (294) and (295), the structure of the so(2,2) genera-
tors is essentially the same as that of the supersymmetric shift operators A and
At In fact, direct calculation also shows that these operators have the same
effect on the wavefunctions in the two symmetry-based schemes [P15, P17, C4].

It has to be noted that the so(2,2) algebra (or its compact version so(4))
plays the role of a potential algebra only for a limited number of potentials, i.e.
for the members of the PI class (factorization type A), while the supersym-
metric construction presented here for P7 symmetric potentials might have
wider applicability. This is somewhat different for the Morse potential belong-
ing to the LIII class (factorization type B): it is possible to define an sl(2,C)
potential algebra associated with it [146, 153], but it is not PT symmetric. Tt
can be made P7T symmetric by defining it along a bent contour of the complex
x plane [91, P9.
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4

Summary

The main results of the present dissertation can be summarized as follows.

1.

I generalized the formalism of the factorization method by introducing
spin degrees of freedom in the quantum mechanical Hamiltonian, in addi-
tion to local potential terms [P6]. I pointed out that in all three examples
(of which two are new) considered, the Hamiltonians possess an infinitely
degenerate ground-state energy level. I generalized the Dirac oscillator
[P2], and demonstrated that it represents an example for the intimate
relation of supersymmetry (factorization) and the Dirac equation.

. T generalized the formalism of supersymmetric quantum mechanics to

complex potentials and exemplified it with the complex Pdschl-Teller
potential [P3] in order to aid numerical calculations generating complex
phase-equivalent potentials by eliminating unphysical states [P3]. Con-
sidering supersymmetric transformations which change the spectrum by
eliminating or adding bound states at specific energies or leave it un-
changed, I determined closed expressions for potentials phase-equivalent
with the generalized Péschl-Teller [C2] and the more general, Natanzon-
class generalized Ginocchio potential [P4].

. I discussed two special limits of the Ginocchio potential, in which it takes

the form of the hyperbolic and trigonometric version of the Poschl-Teller
potential, and pointed out that the su(1,1) algebra associated with the
Ginocchio potential reduces to an su(1,1) potential algebra and an su(2)
spectrum generating algebra, respectively [C3]. T pointed out for the first
time that a specific unitary irreducible representation (called the supple-
mentary series) of the SU(1,1) spectrum generating group associated with
the trigonometric version of the Poschl-Teller potential corresponds to
potentials possessing a “weakly attractive” z2-type singularity [C1], for
which both independent solutions are regular near x = 0.

. In a systematic study of the PT symmetric version of shape-invariant

potentials I defined conditions for the parameters under which the nor-
malizable states belong to energy eigenvalues that are purely real [P9], or
are arranged into complex conjugated pairs [P13]. I demonstrated that
except for the Morse and the Coulomb potentials, the P77 symmetric ver-
sion of the shape-invariant potantials can be obtained by an imaginary
shift of the coordinate: x — x +1ie, and also that these potentials possess
richer spectrum than their Hermitian counterparts [P9]. I showed that
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tuning the potential parameters of the P77 symmetric (complex) square
well, the energy eigenvalues turn from real values to complex pairs one
by one, i.e. the spontaneous breaking of the P7T symmetry occurs con-
tinuously [P14], in contrast with the case of shape-invariant potentials.

. Analyzing the generalized Coulomb potential, which contains both the
harmonic oscillator and Coulomb potential as special cases, I presented
a novel approach to the Coulomb-oscillator connection in various spa-
tial dimensions [P5]. I pointed out that the complications arising due to
the singularity of the one-dimensional Coulomb problem can be avoided
with the use of the generalized Coulomb potential [P5]. I introduced
a generalization of the Coulomb-Sturmian basis and an su(1,1) algebra
associated with it [P5]. T discussed the Coulomb-oscillator connection
for the PT symmetric versions of these potentials too [P8]. T analyzed
further “implicit” potentials with various shapes to illustrate the spec-
tral properties, singularities [P1] and the origins [P1, P18] of Natanzon
potentials.

. I showed that a class of potentials classified previously as a conditionally
exactly solvable (CES) problem is, in fact, a representative of the (ex-
actly solvable) Natanzon potential class, with the property that in case
its energy eigenvalues are real they are supplied by one of the roots of
an algebraic equation cubic in the principal quantum number n [P11].
Investigating the P7T symmetric version of this potential I showed that
in case it has real energy eigenvalues, these are supplied by two roots, in
agreement with the observation that P7 symmetric potentials possess a
richer spectrum than their Hermitian counterparts [P12]. T constructed
another class of conditionally exactly solvable potentials by means of
supersymmetric transformations that eliminate the ground state, add a
new one or leave the spectrum (but not the potential) unchanged [P7].
I showed that the conditionally exactly solvable potentials derived this
way are beyond the Natanzon potential class. Besides reproducing known
results, this systematic construction also produced new potentials.

. Investigating the P77 symmetric version of the Scarf IT potential and the
su(1,1) potential algebra associated with it, I demonstrated that a second
set of normalizable solution evolves from states that are resonances in
the Hermitian version of the potential, and this set has another su(1,1)
potential related to it [P10]. I demonstrated that this doubling of the
normalizable states and algebras, which requires the introduction of the
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quasi-parity quantum number ¢ = £1, occurs for all the shape-invariant
potentials that have su(1,1) or su(2) potential algebras associated with
them, and the two algebras can be unified into an so(2,2) or so(4) po-
tential algebra [P15]. T presented for the first time analytical expressions
for the the pseudo-norm of the normalizable states of the Scarf IT poten-
tial, and showed that according to the expectations, it has indefinite sign
[P16]. As a side result of these investigations I also determined for the
first time the normalization coefficients for the bound-state wavefunc-
tions of the Hermitian Scarf II potential [P16]. As a byproduct of these
investigations, I derived a previously unknown mathematical formula for
the summation of three binomial coefficients.

. Taking the normalizable solutions of P77 symmetric potentials associated
with quasi-parity ¢ = +1 and ¢ = —1, I constructed a supersymmetric
sheme in which the original potential has fwo supersymmetric parner
potentials carrying the ¢ = +1 quantum numbers [P17]. T demonstrated
that in case the P7T symmetry of the original potential is spontaneously
broken, its two partner potentials cease to be PT symmetric [P17]. 1
presented examples for potentials that possess a potential algebra, P7T
symmetry and supersymmetry, and discussed the interrelation of these
symmetry concepts [C4].
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